• Title/Summary/Keyword: earthquake resistant structure

Search Result 127, Processing Time 0.019 seconds

Seismic Performance Evaluation of RC Structure Strengthened by Steel Grid Shear Wall using Nonlinear Static Analysis (비탄성 정적해석을 이용한 격자강판 전단벽 보강 RC구조물의 내진성능평가)

  • Park, Jung Woo;Lee, Jae Uk;Park, Jin Young;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2013
  • The effects of earthquakes can be devastating especially to existing structures that are not based on earthquake resistant design. This study proposes a steel grid shear wall that can provide a sufficient lateral resistance and can be used as a seismic retrofit method. The pushover analysis was performed on RC structure with and without the proposed steel grid shear wall. Obtain the performance point that the target structure for seismic loads applied to evaluate the response and performance levels. The capacity spectrum at performance point is nearly elastic range, so satisfied the performance objectives(LS level). And response modification factor(R factor) were calculated from the pushover analysis. The R factor approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. The R factor increases from 2.17 to 3.25 was higher than the design criteria. As a result, according to reinforcement by steel grid shear wall, strength, stiffness, and ductility of the low-rise RC structure has been appropriately improved.

Generation of Artificial Time History Covering Design Response Spectrum by Two Modification Functions (이중 수정함수 적용을 통한 설계응답스펙트럼 포괄 인공지진파의 생성)

  • Park, Gun;Hong, Ki Nam;Han, Sang Hoon;Kim, Jae Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The domestic and foreign seismic design codes have specified that time history covers design response spectrum when the response spectrum, which calculated from the time history, is smaller than the design response spectrum at five points or less. In order to verify the design codes, time history analysis for a pier was performed by using five artificial time histories conforming design code with various characteristics and its member forces were evaluated according to them. It was confirmed from analysis results that, regardless of the conformity to design code requirement, seismic design using the artificial time histories could not guarantee earthquake resistant design if the response spectrum from them is lower than design response spectrum at the similar period to the natural frequency of structure. Thus, the time history generating method to make its acceleration response spectrum to be greater than design response spectrum at all period was proposed by two modification function in this study. It was also verified whether time histories from the proposed method satisfy the seismic design codes or not.

Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout (그라우트 주입률 변화에 따른 전단탄성계수 평가)

  • Baek, Seungcheol;Lee, Jundae;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • Among various construction methods, deep soil stabilization by chemical method have been widely used in order to improve soft ground. Dynamic variables using ground(such as sand, weathered granite soil and rock) -structure interaction design affected by dynamic load and cyclic load were studied a lot. However, there is something yet to learn about earthquake resistant design regarding reinforced ground by grout. Therefore, in this study using RC test, the correlation between shear strain and shear modulus with change of water content and injection rate in normal portland cement and clay was compared and analyzed by using Ramberg-Osgood model normalization As the result, dynamic coefficient was considerably affected by water content and grout injection rate.

Evaluation of Soil-Structure Interaction Responses of LNG Storage Tank Subjected to Vertical Seismic Excitation Depending on Foundation Type (기초형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 수직방향 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.367-374
    • /
    • 2019
  • We investigate the effect of soil-structure interaction (SSI) on the response of LNG storage tanks to vertical seismic excitation depending on the type of foundation. An LNG storage tank with a diameter of 71 m on a clay layer with a thickness of 30 m upon bedrock, was selected as an example. The nonlinear behavior of the soil was considered in an equivalent linear method. Four types of foundation were considered, including shallow, piled raft, and pile foundations (surface and floating types). In addition, the effect of soil compaction within the group pile on the seismic response of the tank was investigated. KIESSI-3D, an analysis package in the frequency domain, was used to study the SSI and the stress in the outer tank was calculated. Based on an analysis of the numerical results, we arrived at three main conclusions: (1) for a shallow foundation, the vertical stress in the outer tank is less than the fixed base response due to the SSI effect; (2) for foundations supported by piles, the vertical stress can be greater than the fixed base stress due to the increase in the vertical impedance due to the piles and the decrease in radiation damping; and (3) soil compaction had a miniscule impact on the seismic response of the outer tank.

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.