• Title/Summary/Keyword: earthquake early warning

Search Result 29, Processing Time 0.024 seconds

Trends in Disaster Prediction Technology Development and Service Delivery (재난예측 기술 개발 및 서비스 제공 동향)

  • Park, Soyoung;Hong, Sanggi;Lee, Kangbok
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2020
  • This paper describes the development trends and service provision examples of disaster occurrence and spread prediction technology for various disasters such as tsunamis, floods, and fires. In terms of fires, we introduce the WIFIRE system, which predicts the spread of large forest fires in the United States, and the Metro21: Smart Cities Institute project, which predicts the risk of building fires. This paper describes the development trends in tsunami prediction technology in the United States and Japan using artificial intelligence (AI) to predict the occurrence and size of tsunamis that cause great damage to coastal cities in Japan, Indonesia, and the United States. In addition, it introduces the NOAA big data platform built for natural disaster prediction, considering that the use of big data is very important for AI-based disaster prediction. In addition, Google's flood forecasting system, domestic and overseas earthquake early warning system development, and service delivery cases will be introduced.

Analysis on Results and Changes in Recent Forecasting of Earthquake and Space Technologies in Korea and Japan (한국과 일본의 지진재해 및 우주이용 기술예측에 대한 최근의 변화 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.421-428
    • /
    • 2022
  • This study analyzes emerging earthquake and space use technologies from the latest Korean and Japanese scientific and technological foresights in 2022 and 2019, respectively. Unlike the earthquake prediction and early warning technologies presented in the 2017 study, the emerging earthquake technologies in 2022 in Korea was described as an earthquake/complex disaster information technology and public data platform. Many detailed future technologies were presented in Japan's 2019 survey, which includes largescale earthquake prediction, induced earthquake, national liquefaction risk, wide-scale stress measurement; and monitoring by Internet of Things (IoT) or artificial intelligence (AI) observation & analysis. The latest emerging space use technology in Korea and Japan were presented in more detail as robotic mining technology for water/ice, Helium-3, and rare earth metals, and manned station technology that utilizes local resources on the moon and Mars. The technological realization year forecasting in 2019 was delayed by 4-10 years from the prediction in 2015, which could be greater due to the Corona 19 epidemic, the declaration of carbon neutrality in Korea and Japan in 2020 and the Russo-Ukrainian War in 2022. However, it is required to more active research on earthquake and space technologies linked to information technology.

Finding Optimal Installation Depth of Strong Motion Seismometers for Seismic Observation (지진 관측을 위한 최적 설치심도 조사 방법 연구)

  • Seokho Jeong;Doyoon Lim ;Eui-Hong Hwang;Jae-Kwang Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • We installed temporary strong motion seismometers at the ground surface, 1 m, 2 m, and 9 m at an existing seismic station that houses permanent seismometers installed at 20 m and 100 m, to investigate the influence of installation depth on the recorded ambient and anthropogenic noise level and the characteristics of earthquake signals. Analysis of the ambient noise shows that anthropogenic noise dominates where vibration period T < 1 s at the studied site, whereas wind speed appears to be strongly correlated with the noise level at T > 1 s. Frequency-wavenumber analysis of 2D seismometer array suggests that ambient noise in short periods are predominantly body waves, rather than surface waves. The level of ambient noise was low at 9 m and 20 m, but strong amplification of noise level at T < 0.1 s was observed at the shallow seismometers. Both the active-source test result and the recorded earthquake data demonstrated that the signal level is decreased with the increase of depth. Our result also shows that recorded motions at the ground and 1 m are strongly amplified at 20 Hz (T = 0.05 s), likely due to the resonance of the 3 m thick soil layer. This study demonstrates that analysis of ambient and active-source vibration may help find optimal installation depth of strong motion seismometers. We expect that further research considering various noise environments and geological conditions will be helpful in establishing a guideline for optimal installation of strong motion seismometers.

Network vision of disaster prevention management for seashore reclaimed u-City (해안매립 신도시의 재해 예방관리 네트워크 비젼)

  • Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.117-129
    • /
    • 2009
  • This paper studied the safety management network system of infrastructure which constructed smart sensors, closed-circuit television(CCTV) and monitoring system. This safety management of infrastructure applied to bridge, cut slop and tunnel, embankment etc. The system applied to technologies of standardization guidelines, data acquirement technologies, data analysis and judgment technologies, system integration setup technology, and IT technologies. It was constructed safety management network system of various infrastructure to improve efficient management and operation for many infrastructure. Integrated safety management network system of infrastructure consisted of the real-time structural health monitoring system of each infrastructure, integrated control center, measured data transmission using i of tet web-based, collecting data using sf ver, early alarm system which the dangerous event of infrastructure occurred. Integrated control center consisted of conference room, control room to manage and analysis the data, server room to present the measured data and to collect the raw data. Early alarm system proposed realization of warning and response within 5 minute or less through development of sensor-based progress report and propagation automation system using the media such as MMS, VMS, EMS, FMS, SMS and web services of report and propagation. Based on this, the most effective u-Infrastructure Safety Management System is expected to be stably established at a less cost, thus making people's life more comfortable. Information obtained from such systems could be useful for maintenance or structural safety evaluation of existing structures, rapid evaluation of conditions of damaged structures after an earthquake, estimation of residual life of structures, repair and retrofitting of structures, maintenance, management or rehabilitation of historical structures.

  • PDF

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

A Mobile Application for Navigating the Optimal Escape Route in Accidents and Emergency Situations (모바일 어플리케이션을 이용한 재난상황 발생 시 최적 대피경로 설정)

  • Cho, Sung Hyun;Joo, Ki Don;Kang, Hoon;Park, Kyo Shik;Shin, Dong Il
    • Korean Journal of Hazardous Materials
    • /
    • v.3 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • In early 2011, the Fukushima nuclear power plant had greater damage due to earthquake in Japan, and the awareness of safety has increased. In particular, special response systems should be required to handle disaster situations in plant sites which are likely to occur for large disasters. In this study, a program is designed to set up optimum escape routes, by a smart phone application, when a disaster situation occurs. This program could get information of the cumulative damage from sensors and display the escape route of the smallest damage in real-time on the screen. Utilizing our application in real-time evacuation has advantage in reducing cumulative damage. The optimal evacuation route, focusing on horizontal path, is calculated based on getting the data of fire, detected radioactivity and hazardous gas. Thus, using our application provides information of optimal evacuation to people who even can not hear sensor alarms or do not know geography, without requiring additional costs except fixed sensors or server network deployment cost. As a result, being informed of real-time escape route, the user could behave rapidly with suitable response to individual situation resulting in improved evacuation than simply reacting to existing warning alarms.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Application of the Onsite Earthquake Early Warning Technology Using the Seismic P-Wave in Korea (P파를 이용한 지진 현장 경보체계기술의 국내 적용)

  • Lee, Ho-Jun;Lee, Jin-Koo;Jeon, Inchan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.440-449
    • /
    • 2018
  • Purpose: This study aims to design and verify an onsite EEWS that extracts the P-wave from a single seismic station and deduce the PGV. Method: The P-wave properties of Pd, Pv, and Pa were calculated by using 12 seismic waveform data extracted from historic seismic records in Korea, and the PGVs were computed using empirical equation on the P properties - PGV relationship and compared with the observed values. Results: Comparison of the observed and estimated PGVs within the alarm level shows the error rate of 86.7% as minimum. By reducing the PTW to 2 seconds, the alarm time can be shortened by 1 second and the seismic blind zone near the epicenter can be shortened by 6 Km. Conclusion: Through this study, we confirmed the availability of the on-site EEWS in Korea. For practical use, it is necessary to develop regression formula and algorithm reflect local effect in Korea by increasing the number of seismic waveform data through continuous observation, and to eliminate the noise from the site.

Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber (광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Sung-Uk;Min, Kyoung-Ju;Park, Dong-Su;Pang, Gi-Sung;Kim, Kang-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF