• Title/Summary/Keyword: earthquake actions

Search Result 60, Processing Time 0.023 seconds

Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions

  • Kang, Lan;Ge, Hanbin;Magoshi, Kazuya;Nonaka, Tetsuya
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.575-589
    • /
    • 2019
  • The main focus of this study is to numerically investigate the influence of strong earthquake and tsunami-induced wave impact on the response and behavior of a cable-stayed steel bridge with large caisson foundations, by assuming that the earthquake and the tsunami come from the same fault motion. For this purpose, a series of numerical simulations were carried out. First of all, the tsunami-induced flow speed, direction and tsunami height were determined by conducting a two-dimensional (2D) tsunami propagation analysis in a large area, and then these parameters obtained from tsunami propagation analysis were employed in a detailed three-dimensional (3D) fluid analysis to obtain tsunami-induced wave impact force. Furthermore, a fiber model, which is commonly used in the seismic analysis of steel bridge structures, was adopted considering material and geometric nonlinearity. The residual stresses induced by the earthquake were applied into the numerical model during the following finite element analysis as the initial stress state, in which the acquired tsunami forces were input to a whole bridge system. Based on the analytical results, it can be seen that the foundation sliding was not observed although the caisson foundation came floating slightly, and the damage arising during the earthquake did not expand when the tsunami-induced wave impact is applied to the steel bridge. It is concluded that the influence of tsunami-induced wave force is relatively small for such steel bridge with large caisson foundations. Besides, a numerical procedure is proposed for quantitatively estimating the accumulative damage induced by the earthquake and the tsunami in the whole bridge system with large caisson foundations.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

Earthquake Resistant Design Critieria for Cylindrical Liquid-Storage Steel tanks (원통형 액체저장 강탱크의 내진설계기준)

  • 국승규;이진호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • While the codifying works or the earthquake resistant design codes for buildings and bridges have been carried out progressively, such works for tank structures are still at the beginning steps. In case of the collapse of tank structures under seismic actions, substantially severe damages are expected due to the spillage of tank contents in addition to the direct economic losses of tanks and contents. Therefore not only the analysis and verification methods for the dynamic behavior of tank structures but also the measures of minimizing the damage propagation should be included in the codes for tank structures. In this paper the design concepts and principles, the analysis and verification methods as well as the measures against the damage propagation are set forth, which are mandatory for the preparation of the earthquake resistant design codes for cylindrical liquid-storage steel tanks.

  • PDF

A Study on Evacuation Behavior after an Earthquake from the Viewpoint of Children's Composition and Notes in the Great East Japan Earthquake (동일본 대지진 발생후 어린이 작문·기록에 나타난 피난행동에 관한 연구)

  • Won-Jo Jung;Akihito Souda;Takashi Yokoya;Tadasu Iida;Koji Itami;Myung-Kwon Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.331-332
    • /
    • 2022
  • After the Great East Japan Earthquake, reports and books that compiled the testimonies of the victims were published and the situation of the evacuation at that time became known. However, there is very little information on the evacuation situation of children among these data, and it is not fully known what actions the children took and how they evacuated due to an earthquake or tsunami. The purpose of this study is to analyze and examine children's evacuation behavior in the Great East Japan Earthquake, and to predict children's evacuation behavior for future disasters.

  • PDF

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Introduction of ISO 3010 -Bases for Design of Structures-Seismic Actions on Structure (국제 내진 기준(ISO 3010) 소개 및 평가)

  • 한상환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.417-426
    • /
    • 2000
  • This paper introduces the ISO 3010 which is the design standard for seismic action of International Standard Organization. Specially this paper focuses on the philosophical background and the weakness of ISO 3010,. The ISO 3010\ulcorner(Bases for design of structures-Seismic action on structure) were made in 1998 by the efforts of ISO/TC98 which is one working group of ISO. TC98 deals with " Bases for design of structures" in the field of architectural and civil engineering. The revised Committee Draft ISO/CD 3010 was made in February 1999. Even if ISO 3010 has not been complete yet this study carry out critical review of this committee draft.tee draft.

  • PDF

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

Soil-Structure Interaction Analysis of Suspension Bridge for Multiple-Support Seismic Input (다지지점 지진입력에 대한 현수교의 지반-구조물 상호작용해석)

  • 김재민;이명규;신용우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.182-189
    • /
    • 2003
  • Member actions of long-span suspension bridge due to multiple-support motion are generally larger than those for synchronous support motion frequently employed in aseismic design of a conventional structure. In this study, all the sources of the asynchronous support motion are considered including the loss of coherence and the soil-structure interaction as well as the time delay due to wave propagation of seismic waves. The substructure technique analyzing total soil-foundation-structure system as a superposition of two sub-structures including soil-foundation system and structure itself is employed for the seismic response analysis of the suspension bridge. Finally, an application example is presented to demonstrate applicability of the proposed methodology.

  • PDF