• Title/Summary/Keyword: earthquake/seismic vulnerability

Search Result 143, Processing Time 0.025 seconds

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities (설계편심의 크기에 따른 비틀림 비정형 건물의 최종 정적편심 크기의 비교에 관한 연구)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.33-40
    • /
    • 2012
  • To reduce the vulnerability of torsional irregular buildings caused by seismic loads, the torsional amplification factor was introduced by the seismic code. This factor has been applied differently in a variety of seismic codes. In this study, the final static eccentricity, and the lateral and torsional stiffness ratios of buildings designed with different design eccentricities were compared. The increment of the torsional amplification factor resulted in a decrement of the final static eccentricity of the building. However, after reaching the maximum value of this factor, the final static eccentricity of the building increased again. The final static eccentricity of the building designed by multiplying the sum of the inherent and accidental eccentricity by the torsional amplification factor was zero or had a minus value, depending to the position of the vertical element.

A comparative study on rapid seismic risk prioritization for reinforced concrete buildings in Antalya, Türkiye

  • Engin Kepenek;Kasim A. Korkmaz;Ziya Gencel
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.185-195
    • /
    • 2023
  • Antalya is located south part of minor Asia, one of the biggest cities in Türkiye. As a result of population growth and vast migration to Antalya, many parts of the city that were not suitable for construction due to its geological conditions have become urban areas, and most of these urban areas are full of poorly engineered buildings. Poor engineering has been combined with unplanned urbanization, that causes utter vulnerability to disasters in Antalya. When an earthquake-prone city, Antalya faces with an earthquake risk, fear arises in society. To overcome this problem, it has become necessary to investigate the building stock, expressed in hundreds of thousands, in a fast and reliable way and then perform an urban transformation to create the perception of structural safety. However, the excessive building stock, labor, and economic problems made the implementation stage challenging and revealed the necessity of finding alternative solutions in the field. The present study presents a novel approach for assessment and model based on a rapid visual inspection method to transform areas under earthquake risk in Türkiye. The approach aimed to rank the interventions for decision-making mechanisms by making comparisons in the scale hierarchy. In the present study, to investigate the proposed approach, over 26,000 buildings were examined in Antalya, which is the fifth largest city in Türkiye that has a population of over 2.5 Million. In the results of the study, the risk classification was defined in the framework of building, block, street, neighborhood, and district scales.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

Seismic Resisting Capacity Enhancement by S Type Strut Steel Damper Strengthening (S형 스트럿 강재 댐퍼 보강에 의한 RC 골조의 내진성능 향상)

  • Lee, Hyun-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.43-50
    • /
    • 2018
  • The purpose of this study is to improve the seismic performance of RC framed buildings such as piloti buildings and school facilities. For this purpose, a half size RC frame specimen (SFD) was made and the inside of frame was reinforced with steel frame and S type strut steel damper. The experimental results are compared with those of the previous studies under the same conditions. The comparative specimens are non-reinforced specimen (BF) and damper reinforced specimen (AFD) that confined the column with an aramid sheet. As a result of comparing the maximum strength, stiffness degradation and energy dissipation capacity, SFD specimen was evaluated to be better than comparative specimens. According to the experimental results and FE analysis results, it was confirmed that the shear deformation was concentrated in the steel damper. And it was showed that cracks were concentrated at the upper and lower ends of the strut of the S type damper, and the final failure was observed at struts. From this, it was verified that the steel damper appropriately dissipates energy due to the lateral load.

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

Fragility-based performance evaluation of mid-rise reinforced concrete frames in near field and far field earthquakes

  • Ansari, Mokhtar;Safiey, Amir;Abbasi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.751-763
    • /
    • 2020
  • Available records of recent earthquakes show that near-field earthquakes have different characteristics than far-field earthquakes. In general, most of these unique characteristics of near-fault records can be attributed to their forward directivity. This phenomenon causes the records of ground motion normal to the fault to entail pulses with long periods in the velocity time history. The energy of the earthquake is almost accumulated in these pulses causing large displacements and, accordingly, severe damages in the building. Damage to structures caused by past earthquakes raises the need to assess the chance of future earthquake damage. There are a variety of methods to evaluate building seismic vulnerabilities with different computational cost and accuracy. In the meantime, fragility curves, which defines the possibility of structural damage as a function of ground motion characteristics and design parameters, are more common. These curves express the percentage of probability that the structural response will exceed the allowable performance limit at different seismic intensities. This study aims to obtain the fragility curve for low- and mid-rise structures of reinforced concrete moment frames by incremental dynamic analysis (IDA). These frames were exposed to an ensemble of 18 ground motions (nine records near-faults and nine records far-faults). Finally, after the analysis, their fragility curves are obtained using the limit states provided by HAZUS-MH 2.1. The result shows the near-fault earthquakes can drastically influence the fragility curves of the 6-story building while it has a minimal impact on those of the 3-story building.

A Development of a Seismic Vulnerability Model and Spatial Analysis for Buildings (건물에 대한 지진취약도 모델링 및 공간 분석)

  • Kim, Sang-Bin;Kim, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study is to suggest a method of predicting seismic vulnerability and safety conditions of each building in a targeted area. The scope of this study includes 'developing a simulation model for precaution activities,' 'testing the validity of the developed model', From the facility point of view, target of this study is a local building system. According to the literature review, the number of earthquake prediction modeling and cases with GIS applied is extremely few and the results are not proficient. This study is conducted as a way to improve the previous researches. Statistic analyses are conducted using 348 domestic and international data. Finally, as a result of the series of statistical analyses, an adequate model is developed using optimization scale method. The ratio of correct expectation is estimated as 87%. In order to apply the developed model to predict the vulnerability of the several chosen local building systems, spatial analysis technique is applied. Gangnam-gu and Jongro-gu are selected as the target areas to represent the characteristics of the old and the new downtown in Seoul. As a result of the analysis, it is discovered that buildings in Gangnam-gu are relatively more dangerous comparing to those of Jongro-gu and Eunpyeong-gu.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.