• Title/Summary/Keyword: earthquake/seismic response

Search Result 1,572, Processing Time 0.027 seconds

Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability (마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용)

  • Hu, Jong Wan;Park, Ji-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.377-387
    • /
    • 2014
  • This study mainly treats a new type of the bracing friction damper system, which is able to minimize structural damage under earthquake loads. The slotted bolt holes are placed on the shear faying surfaces with an intention to dissipate considerable amount of friction energy. The superelastic shape memory alloy (SMA) wire strands are installed crossly between two plates for the purpose of enhancing recentering force that are able to reduce permanent deformation occurring at the friction damper system. The smart recentering friction damper system proposed in this study can be expected to reduce repair cost as compared to the conventional damper system because the proposed system mitigates the inter-story drift of the entire frame structure. The response mechanism of the proposed damper system is firstly investigated in this study, and then numerical analyses are performed on the component spring models calibrated to the experimental results. Based on the numerical analysis results, the seismic performance of the recentering friction damper system with respect to recentering capability and energy dissipation are investigated before suggesting optimal design methodology. Finally, nonlinear dynamic analyses are conducted by using the frame models designed with the proposed damper systems so as to verify superior performance to the existing damper systems.

The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on Structural Testing (전단벽의 최소 층변위 및 에너지 소산성능)

  • ;;N.M.Hawins
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.335-343
    • /
    • 1998
  • Recently, new experimental criteria for reinforced concrete frame structures in high seismic regions have been reported in United States. The objective of the criteria is to get more reliable test data which are valid to compare with other test data done by different researchers. The criteria precribe test method of specimens, analysis method of test data, and limiting values needed to specimens like drift angle, energey dissipation ratio, stiffness, and strength. These criteria might be usefel to get objective conclusion. Shear wall structures, which belong to one of earthquake resisting systems, also need this kind of criteria. But, the general response of shear wall structures is a little bit different from that of frame structures since shear wall restrains the horizontal displacement caused by horizontal force and increases the stiffness and strength. The objective of this paper is to propose a criterion for limiting drift and energy dissipation ratio of shear walls based on structural testing. These are the most important values for presenting the capacity of shear walls. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to the results for a suggested acceptance criteria that involve a limiting drift that is a function of aspect ratio and a limiting energy dissipation ratio that is a function of displacement ductility and damping.