• Title/Summary/Keyword: earth-work

Search Result 622, Processing Time 0.025 seconds

Electrical and Physical Characteristics of Nickel Silicide using Rare-Earth Metals (희토류 금속을 이용한 니켈 실리사이드의 전기 및 물리적 특성)

  • Lee, Won-Jae;Kim, Do-Woo;Kim, Yong-Jin;Jung, Soon-Yen;Wang, Jin-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we investigated electrical and physical characteristics of nickel silicide using rare-earth metals(Er, Yb, Tb, Dy), Incorporated Ytterbium into Ni-silicide is proposed to reduce work function of Ni-silicide for nickel silicided schottky barrier diode (Ni-silicided SBD). Nickel silicide makes ohmic-contact or low schottky barrier height with p-type silicon because of similar work function (${\phi}_M$) in comparison with p-type silicon. However, high schottky barrier height is formed between Ni-silicide and p-type substrate by depositing thin ytterbium layer prior to Ni deposition. Even though the ytterbium is deposited below nickel, ternary phase $Yb_xN_{1-x}iSi$ is formed at the top and inner region of Ni-silicide, which is believed to result in reduction of work function about 0.15 - 0.38 eV.

The Effects of the IERS Conventions (2010) on High Precision Orbit Propagation

  • Roh, Kyoung-Min;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The Earth is not perfectly spherical and its rotational axis is not fixed in space, and these geophysical and kinematic irregularities work as dominant perturbations in satellite orbit propagation. The International Earth Rotation Service (IERS) provides the Conventions as guidelines for using the Earth's model and the reference time and coordinate systems defined by the International Astronomical Union (IAU). These guidelines are directly applied to model orbital dynamics of Earth satellites. In the present work, the effects of the latest conventions released in 2010 on orbit propagation are investigated by comparison with cases of applying the previous guidelines, IERS Conventions (2003). All seven major updates are tested, i.e., for the models of the precession/nutation, the geopotential, the ocean tides, the ocean pole tides, the free core nutation, the polar motion, and the solar system ephemeris. The resultant position differences for one week of orbit propagation range from tens of meters for the geopotential model change from EGM96 to EGM2008 to a few mm for the precession/nutation model change from IAU2000 to IAU2006. The along-track differences vary secularly while the cross-track components show periodic variation. However, the radial-track position differences are very small compared with the other components in all cases. These phenomena reflect the variation of the ascending node and the argument of latitude. The reason is that the changed models tested in the current study can be regarded as small fluctuations of the geopotential model from the point of view of orbital dynamics. The ascending node and the argument of latitude are more sensitive to the geopotential than the other elements. This study contributes to understanding of the relation between the Earth's geophysical properties and orbital motion of satellites as well as satellite-based observations.

Orientations and Execution of Beginning Secondary Science Teachers' Teaching Practices: Motivating and Understanding Students (초임 중등 과학 교사의 교수활동에 대한 지향과 실행: 동기 유발과 학생 이해를 중심으로)

  • Kwon, Hong-Jin;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.289-301
    • /
    • 2006
  • The purpose of this study is to investigate beginning secondary science teachers' teaching practices in terms of motivating and understanding students. Six first-year teachers participated in this study. Data were collected by classroom observations and structured interviews. Instructional materials used during the class were also collected to understand teaching practice. Lessons observed were video-tape recorded and the teachers were interviewed. Video- and audio-tape recording were transcribed. The framework, developed by Knowles Project Team of Michigan State University, was adopted and revised according to Korean classroom context and employed as an analytical tool for teaching practices. The beginning secondary science teachers intention ranged from 'Managing Work' to 'School Science.' No teachers revealed 'Reform Science Teaching' orientation. For the execution of science lessons, one teacher with 'Managing Work' orientation showed 'expert' level of execution, but the others executed at a 'novice' level. Beginning science teachers need to be guided and informed about 'Reform Science Teaching' for motivating and understanding students to develop professionally.

The Separation of Ce, Pr, Nd and Sm from Rare Earth Oxides (1차 분리된 희토류산화물 중 Ce, Pr, Nd 및 Sm의 분리)

  • Yong-Kuen Lee;In-Wha Woo;Young-Gu Ha
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.434-443
    • /
    • 1980
  • The purpose of this work was to separate Ce, Pr, Nd and Sm from rare-earth oxides by column chromatography. Rare earth solution were adsorbed into the Amberlite IR-120 resin and were eluted by the ammonia alkali solution of the EDTA. As a result of determinating rare earth metals of each fraction, Ce was separated very effectively and Nd and Sm partially separaed but Pr never separated.

  • PDF

Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation (트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석)

  • Seo , Sung-Tag;Heo , Chang-Han;Kim , Hee-Duck;Jee , Hong-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

Influence of Near Field Blasting Vibration to Earth Retaining Wall (근거리 발파진동이 흙막이 구조물에 미치는 영향)

  • Whang, Hyun-Ju;Lee, Sang-Pil;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Allowable level of blasting vibration for earth retaining wall was examined in this study. Blasting vibration was measured at near field blasting to evaluate the influence of the blasting work to earth retaining wall and rear ground. Although small scale blasting with $0.5{\sim}2.0kg$ explosives per round merely influenced to the structure and ground, but it was suggested to blast at the distance of twice the least burden considering the block movement.

The Estimation of Soil Conversion Factor using Digital Imagery (수치영상을 이용한 토량환산계수 산정)

  • 이종출;차성렬;장호식;김진수
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.169-174
    • /
    • 2003
  • Design of a rational earth volume conversion coefficient is required as the earth volume conversion coefficient may give great influence on construction work volume and construction costs in the civil engineering works where large-scaled earth volume is excavated. However, there are a great deal of difficulties in the calculation of the exact spoil surface earth and Insufficient earth volume by adopting the figures presented on the generally used design specifications which are not the results obtained from the selection tests in calculating the earth volume conversion coefficient. In this connection, it would be desirable to calculate the earth volume conversion coefficient by carrying out large-scaled site test adequate for the relevant environment. In consequence, this study aims at calculating the exact earth volume conversion coefficient of cutting and banking areas of weathering rocks in large-scaled construction sites where land is being developed into home lots. For this, we have excavated the respective 20 sites of the cutting and banking areas in the said site and then calculated the volume after the excavation. As a result, the relative exactness degree of the crossing was calculated at 0.5% in average. The relative exactness degree of 0.5% in the volume may be judged as an exact measurement as it corresponds to 0.17% of the relative exactness degree in the length measurement. We have calculated the exact earth volume conversion coefficient by the use of function ratio as per the wet unit weight and the indoor soil quality test as per volume calculated. And then we have found out minor differences as a result of the comparison and analysis with the earth volume conversion coefficient determined by the dry unit weight test as per sand replacement method. This may be judged as a rational design method for the calculation of earth volume conversion coefficient, as well as high reliability of site test as a precision photogrammetry is adopted for volume measurement of the irregular excavating areas.

  • PDF

Preparation of Tomographic Maps Based on the R Package (R 패키지를 이용한 토모그라피 지도 제작)

  • Chung, Tae-Woong;Lees, Jonathan M.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • Being widely used for preparation of geographic maps in the field of earth sciences, Generic Mapping Tools (GMT) is difficult to understand the contents for user, and not working well with Microsoft (MS) Window PC. By utilizing R package, 'GEOmap', we can do mapping work at MS window PC with commands easier than those of GMT. In addition, the R commands offer interactive help. Here we introduce brief feature of 'GEOmap', and illustrate the procedure for preparing tomographic maps with an example.

Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

  • Song, Young-Joo;Choi, Su-Jin;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases' optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.