• Title/Summary/Keyword: earth-work

Search Result 622, Processing Time 0.027 seconds

A Study on the Deok and Its Practice in Daesoon Thought: The Great Deok of Heaven and Earth of Kang Jeungsan (대순사상에 나타난 덕(德)과 그 실천수행 -강증산의 '천지대덕(天地大德)'과 관련하여-)

  • Joo, So-yeon;Ko, Nam-sik
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.38
    • /
    • pp.1-46
    • /
    • 2021
  • Since ancient times, the word Deok (德, virtue) has been used as a term in ethics. In the east, it originally meant 'to acquire (得),' and during the warring states period, it was used to indicate 'personality' or 'value;' especially for political leaders. Then, in Confucianism, the word Deok developed into an ethical term suggesting that people should acquire Deok in their action so as to achieve human perfection. In Daesoon Thought, Deok originates from the Dao, and the two are close in the same manner that Yin and Yang are close and interrelated. The Dao of Daesoon Thought indicates the Great Dao of Heaven and Earth, which Gucheon Sangje had opened when he performed his Gongbu (holy work) at Daewonsa Temple, is such that the Great Deok was divided into the Deok of Heaven, the Deok of Earth, and the Deok of Humanity. This allows for the realization of Deok in each of the Three Realms. Jo Jeongsan, the successor of Gucheon Sangje, said that he will inherit the Great Deok originated from the Great Dao and enlighten the world to the Dao. The cause of the accumulation of grievances in the Three Realms was due to the failure to sufficiently spread Deok throughout the Three Realms. The Later World is where Deok will be offered in its full extent as it was secured by the Cheonjigongsa (Reordering Works of Heaven and Earth) performed by Gucheon Sangje. However, as the main agent of spreading Deok is the heart-mind, humans need to cultivate their heart-mind in the correct way. When humans finally become Dotong-gunja (beings who are perfectly unified with the Dao) and generously practice Deok in the world, there will be no grievances anywhere in the Three Realms. There are four ways of practicing Deok: Deok by caring for life, Eondeok (Deok of speech), Gongdeok (practicing meritorious Deok), and Podeok (spreading of Deok) to the world. Practicing the Deok by caring for life is to save and protect living beings based on the spirit of Jesaenguise (saving lives and curing the world). Eondeok is practiced when people speak to others in a positive way that fosters widespread goodness based on the spirit of Sangsaeng (mutual beneficence). When people perform Gongdeok they will be rewarded for their actions. Podeok can be realized when the followers of Sangje spread the Great Dao of Heaven and Earth based on the teachings of Daesoon Thought.

Effects of Geological Structures on Slope Stability : An Example from the Northwestern Part of Daegu, Korea (퇴적암 내의 지질구조가 비탈면 안정성에 미치는 영향 : 대구 북서부 지역의 예)

  • Ko, Kyoung-Tae;Choi, Jin-Hyuck;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The purpose of this work is to gain a better understanding of the interrelationships between geological structures and slope failure in sedimentary rocks. In the studied slopes, construction-related slope failure could only be observed on the south-dipping slopes. This indicates that slope stability may be dependent on the angular relationships between the dip direction of bedding and the orientation of the slope. Slope failure continued, post-construction, around large fault zones in the studied outcrop; these fault damage zones are, however, not easily recognized in the field. Here we suggest a new method that uses accumulated fracture density to precisely identify fault damage zones. Multiple-faced slopes are now increasingly being exposed during large-scale construction projects in South Korea. This multiple-faced slope analysis indicates that the stability of a slope should be evaluated by identifying domains, through the analysis of possible slopes and their angular relationships with bedding and other discontinuities, prior to construction. Therefore, careful consideration of geological structures such as bedding and other discontinuities, and their angular relationships during the design of cuttings through sedimentary rocks, will increase the efficiency of construction and enable the safe construction of more stable slopes that will retain their stability after construction.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

A Study on Design of Earth-Retaining Structure Constructed by a Row of Bored Piles (주열식(柱列式) 흙막이벽(壁)의 설계(設計)에 관한 연구(研究))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 1985
  • A row of bored piles has been used in several excavation works to retain the earth. This excavation bracing system has much effect on low-vibration and low-noise during construction. The system is also effective to provide protection to the adjacent existing ground and structures. For the purpose of establishment of a logical design method for the bored piles, first, a theoretical equation to estimate the resistance of piles is derived. Because arching action of soils between piles is considered in the equation, the characteristics of soils and the installation condition of piles would be considered logically from the beginning. Then a method is investigated to decide the interval ratio of piles. According to the method, the interval between piles can be decided from the information of the Peck's stability number, the coefficient of lateral earth pressure and the internal friction angle of soil. Finally, a design method is presented for the bored piles used for excavation work. In the presented design method, such factors as depth of excavation, pile diameter, interval between piles, pile length below bottom of excavation and pile stiffness, can be selected systematically.

  • PDF

A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall (앵커지지 흙막이 벽체의 합리적인 3차원 수치해석기법 적용에 관한 연구)

  • Jeong, Sang-Seom;Sim, Jae-Uk;Lee, Sung-June
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.29-39
    • /
    • 2016
  • This paper presents the results of 2D and 3D finite element simulations conducted to analyze the effects of excavation depth (H), excavation width (L), and ground condition on the behavior of anchored earth retaining wall in inclined ground layers. The results of numerical analyses are compared with those of the site instrumentation analyses. Based on the results obtained, it appeared that 2D numerical analysis tends to overestimate the horizontal displacement of retaining wall compared to the 3D numerical analysis. When the excavation depth is deeper than 20m, it is found that 2D and 3D numerical analysis results of excavation work in soil ground condition are more different from the results in rock ground condition. For an accurate 3D numerical analysis, applying 3D mesh which has an excavation width twice longer than excavation depth is recommended. Consequently, 3D numerical analysis may be able to offer significantly better predictions of movement than 2D analysis.

A Communication Structure of Science Gifted Students Based on the Social Network Analysis (사회연결망법을 이용한 과학영재들의 의사소통 구조 분석)

  • Chung, Duk-Ho;Yoo, Dae Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The purpose of this study was to investigate the communication structures that science gifted students used in small group activities, and to examine the relationship between communication styles and their achievement level. Eight small groups,5 members in each, participated in small group activities, in which they discussed how to calculate the average density of the earth. The communication structures and the achievement level presented in the group activities were analyzed using Pajek, Ucinet 6.0. As a result, we classified the communication styles of science gifted students into monopolistic type and co-ownership type according to the degree of dispersion of the interaction. We also classified it into $D_H{\cdot}N_H$ type, $D_H{\cdot}N_L$ type, $D_L{\cdot}N_H$ type, and $D_L{\cdot}N_L$ type based on the density and network centralization of interaction. The achievement levels of gifted students in their group work were affected by the density of interaction and the network centralization in small group activities, not by the dispersion of interaction among the members of the groups. Therefore, we recommend that teachers make the communication relevant to solving problem when they utilize a small group activity in science teaching.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Potential as a Geological Field Course of the Northwest Coast, Goheung Gun (고흥군 북서 해안의 지질학습장으로서의 활용가능성)

  • Kim, Hai-Gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.163-172
    • /
    • 2016
  • The aim of this study is to investigate the geological features distributed in the northwest coast, Goheung Gun as a geological field course of all levels. The study area is about 1.6km coast in direction of northwest from Sumundong ferry to Jangsun beach. The learning contents of the geology units in science textbooks from elementary school to high school was analyzed and, geomorphology and geology of study area was investigated for this study. In this study area, lots of geomorphology and geology elements related to the learning contents of the geology units in science textbooks were founded such as gravel beach, sea cliff, granite, rhyolite, andesite, gneiss, sedimentary rocks, fault, unconformity, stratification, cross bedding, graded bedding, intrusion structure, vein, dyke, plant fossil and spheroidal weathering. Characteristically, strata, stratification, granite, sedimentary rocks(conglomerate, sandstone, mudstone and shale), fault, plant fossil and weathering phenomenon were commonly involved with the learning contents of the geology units in elementary school science, middle school science and high school earth science I, II. This area is to be recommended as a site of geological field course for all students from elementary school to high school, as various field work materials for geological learning were distributed and, geological observation trail of about 400m in length for observation of strata and so on was installed along the coast in direction of the northwest from Sumundong ferry.

Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation (수치해석적 다짐 작용 연구: 공극률과 퇴적층 두께 변화에 미치는 영향)

  • Kim, Yeseul;Lee, Changyeol;Lee, Eun Young
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.631-640
    • /
    • 2018
  • To understand the formation and evolution of a sedimentary basin in basin analysis and modelling studies, it is important to analyze the thickness and age range of sedimentary layers infilling a basin. Because the compaction effect reduces the thickness of sedimentary layers during burial, basin modelling studies typically restore the reduced thickness using the relation of porosity and depth (compaction trend). Based on the compilation plots of published compaction trends of representative sedimentary rocks (sandstone, shale and carbonate), this study estimates the compaction trend ranges with exponential curves and equations. Numerical analysis of sedimentary compaction is performed to evaluate the variation of porosity and layer thickness with depth at key curves within the compaction trend ranges. In sandstone, initial porosity lies in a narrow range and decreases steadily with increasing depth, which results in relatively constant thickness variations. For shale, the porosity variation shows two phases which are fast reduction until ~2,000 m in depth and slow reduction at deeper burial, which corresponds to the thickness variation pattern of shale layers. Carbonate compaction is characterized by widely distributed porosity values, which results in highly varying layer thickness with depth. This numerical compaction analysis presents quantitatively the characteristics of porosity and layer thickness variation of each lithology, which influence on layer thickness reconstruction, subsidence and thermal effect analyses to understand the basin formation and evolution. This work demonstrates that the compaction trend is an important factor in basin modelling and underlines the need for appropriate application of porosity data to produce accurate analysis outcomes.

Characteristics of Middle School Students' Exploration of Art Materials Including Astronomical Phenomena (천문 현상을 포함하는 예술 작품에 대한 중학생의 탐색 분석)

  • Choi, Haneul;Shin, Donghee
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.700-716
    • /
    • 2021
  • This study is based on the importance of observation or exploration in contemporary scientific inquiry and the need to expand the learning materials of science inquiry. It aims to analyze students' characteristics of exploration in abduction by developing and applying an educational program using art materials. For this study, a program named "Scientist going to the museum" utilizing artistic materials such as Oriental and Western paintings, mythology, orchestral suite, and traditional houses, was developed and five middle school students participated. Students who found and explored interesting phenomena in the work were divided into three main groups depending on the characteristics of the exploration activity. Some students observed and described elements that could be connected to scientific concepts, while others mainly explored everyday elements that were relatively unrelated to such concepts. Moreover, another type of students explored the works based on their subjective evaluations. This study shows that learning materials that cannot be visually explored are not suitable for abductive activities that students' prior knowledge has a significant impact on their exploration, and that educational materials for earth science inquiry could be expanded. This study also provides an example of learning materials and methods, and that abduction may be utilized for learning astronomy.