• 제목/요약/키워드: earth surface processes

검색결과 159건 처리시간 0.03초

구미 천생산 타포니의 풍화과정에 관한 연구: GIS 보간법을 활용한 함수율 측정 자료의 해석 (A Study on Weathering Processes of Tafoni in Mt. Cheonsaeng, Gumi, the Republic of Korea: Interpretation of Water Content Data using GIS Interpolation Analysis)

  • 신재열;이진국;추창오;박경근
    • 한국지구과학회지
    • /
    • 제36권6호
    • /
    • pp.543-552
    • /
    • 2015
  • 본 연구는 경상북도 구미시 천생산 지역에서 발달하는 타포니를 대상으로 암석의 풍화 과정 및 타포니의 형성 과정을 분석하고 있다. 연구지역의 타포니 발달은 조립질 퇴적암인 역암과 역질사암에서 발생빈도가 높으며 타포니의 발생은 역의 이탈 및 박리가 발생한 지점에서부터 시작되는 것으로 추정된다. 지형적으로 산지의 남사면 암석 노출지에서 타포니의 집중적 발달이 관찰되는데, 이는 겨울철 기계적 풍화와 여름철 화학적 풍화의 진행이 상대적으로 높은 환경적 조건에 따른 것으로 해석된다. 타포니가 발달한 암석 표면에서 측정한 함수율의 분포 특성은 타포니 발생 지점이 주변에 비해 높은 함수율을 명확히 보여주고 있어 암석 내의 수분은 어떤 기제로든 타포니 발생에 상당한 영향을 끼치는 것으로 판단된다. 타포니 내에서 확인되는 풍화 침전물 및 이차광물에 관한 분석은 후속 연구로 현재 진행 중에 있다.

시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축 (Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction)

  • 강기묵;김덕진;황지환;최창현;남성현;김성중;조양기;변도성;이주영
    • 한국해양학회지:바다
    • /
    • 제22권3호
    • /
    • pp.57-68
    • /
    • 2017
  • 이어도 종합해양과학기지(IORS, Ieodo Ocean Research Station) 주변 해역은 시 공간적으로 해양 환경 변화가 심하여, 해양-대기교환 과정을 비롯하여 해양 생태계와 기후 변화 연구에 필수적인 해수면온도(SST, Sea surface temperature) 자료의 지속적인 측정이 요구되는 해역이다. 본 연구에서는 이어도 종합해양과학기지에 열적외선 센서를 이용하여 해수면온도 연속 관측이 가능한 시스템을 구축하였다. 자동 대기 보정 및 해양 조건에 따른 방사율 계산이 가능한 해수면온도 추출 알고리즘을 개발하였고, 현장측정 해수면온도 자료와의 비교 및 검증을 통해 정확도를 평가하였다. 2015년 5월 17일부터 26일, 그리고 2016년 7월 15일부터 18일까지 기지에 체류하는 동안 열적외선 관측 시스템으로 측정된 해수면온도와 기지 부착 CT (Conductivity-Temperature) 및 튜브 부착 수온 센서들을 이용하여 현장에서 측정된 해수면온도 시계열을 비교하여 상호상관계수0.72-0.85, 평균제곱근 편차 $0.37-0.90^{\circ}C$의 정확도를 얻었다. 이 시스템은 이어도 종합해양과학기지뿐만 아니라 신안 가거초 및 옹진 소청초 등의 다른 종합해양과학기지에도 쉽게 구축이 가능한 시스템으로써 향후 발사될 인공위성의 해수면온도 산출알고리즘 개발의 테스트사이트나 검보정사이트로 활용될 수 있을 것으로 기대할 수 있다.

PACRIM SCIENCE APPLICATIONS: A DECADE WITH AIRSAR

  • Milne, A.K.;Tapley, I.J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.428-428
    • /
    • 2002
  • The scientific objectives of PACRIM (Pacific Rim) are to advance the understanding of polarimetric and interferometric radar and to promote its application in environmental research designed to detect and quantify changes found in both the physical and humanly dominated ecosystems on the earth's surface. The information derived is used to more readily identify environments at risk; improve environmental decision making and the management of resources and thereby lead to the implementation of more effective and sustainable land use practices. PACRIM is a collaborative research project was organized by NASA's Mission to Planet Earth, Airborne Sciences Program; the Jet Propulsion Laboratory; CSIRO-COSSA and the Centre for Remote Sensing and GIS at the University of New South Wales. A decade of working with AIRSAR data (1993-2003) in the Australia-Asian-Pacific region has provided the opportunity for more than 400 investigators from 20 countries to collect, analyse, interpret and apply state-of-the-art radar data to earth-science studies. This has been achieved by scientists working within seven broad research themes; o Forestry and vegetation o Geology and tectonic processes o Interferometry o Disaster management o Coastal analysis o Agriculture o Urban and regional development. This paper presents an overview of the three data acquisition missions (1993,1996 and 2000) and the science research outcomes achieved from analyzing high quality radar data.

  • PDF

북아메리카 사막 지형에 미친 인류의 영향: 피닉스, 애리조나 지역을 사례로 (Human Impacts on Urban Landscapes in North American Desert: A Case Study in the Phoenix, Arizona, USA)

  • 정아라
    • 한국지형학회지
    • /
    • 제26권3호
    • /
    • pp.69-85
    • /
    • 2019
  • Humans have been important driver to reconfigure the terrestrial surface of the Earth by altering its morphology and processes. The effect of human activities on the physical landscape, however, shows substantially uneven geographical patterns. Most of anthrogemorphoogical studies regarding human-induced denudation have focused on areas with a long history of human modifications such as humid landscapes, so the hypothesis is naturally a great human impact on landscapes. The effect of human activities on dryland Earth surfaces are far less commonly studied, although erosion is one of major concerns in arid and semi-arid region regarding land and water quality degradation. The urban metropolis of Phoenix, Arizona, USA provides an opportunity to explore the impact of the Anthropocene. The Phoenix metropolitan area rests on classic desert landforms, such as extensive pediments, alluvial fans and sand sheets. Human activities including cattle crazing, wildfire resulting from introduced grass species by human, and recent urbanization processes have impacted these classic desert landforms and altered geomorphic processes. The purpose of this paper, therefore, rests in examining Anthropocene in the geomorphology of the north-central Sonoran Desert. The objectives of this paper are: i) to understand the impact of the Anthropocene on the geomorphological processes and forms through field observations; ii) to quantify the magnitude of human impacts on landscape using a published two-decade long record of erosion dataset and natural background erosion dataset in submitted manuscript at the sprawling edge of the Phoenix metropolitan region; iii) to examine how geomorphic outcome can affect the sustainability of cities through the estimation of sediment yield under the condition of urban sprawl.

MODIS AOD 기대 오차에 따른 6SV 기반 KOMPSAT-3A 채널별 지표반사도 오차 영향 분석 (Analysis of the Impact of Surface Reflectance Error Retrieved from 6SV for KOMPSAT-3A according to MODIS AOD Expected Error)

  • 정대성;심수영;우종호;김나연;박성우;김홍희;한경수
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1517-1522
    • /
    • 2023
  • 본 연구에서는 Second Simulation of the Satellite Signal in the Solar Spectrum Vector를 활용하여 Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD)의 기대 오차(expected error, EE)가 KOMPSAT-3A 지표반사도(surface reflectance, SR)의 정확도에 미치는 영향을 평가한다. 연구에서 다양한 지상 AOD와 그에 따른 MODIS AOD EE를 고려함으로써, 파장이 짧고 태양천정각(solar zenith angle, SZA)이 높을수록 SR 오류가 증가한다는 결과를 확인했으며, 이는 파장과 SZA 고려 사항을 통합하여 대기보정 알고리즘을 개선하기 위한 추가 연구가 필요하다는 점을 강조한다. 또한, 이 연구는 대기보정 과정에서 다른 위성의 AOD 자료 활용에 대해 더 잘 이해하기 위한 기초 자료를 제공하고 대기보정 기술 발전에 기여할 것으로 예상한다.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

운고계 후방산란 강도와 기상변수 자료를 이용한 지표면 PM2.5 농도 계산 (Calculations of Surface PM2.5 Concentrations Using Data from Ceilometer Backscatters and Meteorological Variables)

  • 정희정;엄준식
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.61-76
    • /
    • 2022
  • In this study, surface particulate matter (PM2.5) concentrations were calculated based on empirical equations using measurements of ceilometer backscatter intensities and meteorological variables taken over 19 months. To quantify the importance of meteorological conditions on the calculations of surface PM2.5 concentrations, eight different meteorological conditions were considered. For each meteorological condition, the optimal upper limit height for an integration of ceilometer backscatter intensity and coefficients for the empirical equations were determined using cross-validation processes with and without considering meteorological variables. The results showed that the optimal upper limit heights and coefficients depended heavily on the meteorological conditions, which, in turn, exhibited extensive impacts on the estimated surface PM2.5 concentrations. A comparison with the measurements of surface PM2.5 concentrations showed that the calculated surface PM2.5 concentrations exhibited better results (i.e., higher correlation coefficient and lower root mean square error) when considering meteorological variables for all eight meteorological conditions. Furthermore, applying optimal upper limit heights for different weather conditions revealed better results compared with a constant upper limit height (e.g., 150 m) that was used in previous studies. The impacts of vertical distributions of ceilometer backscatter intensities on the calculations of surface PM2.5 concentrations were also examined.

Optical Noise Removal in the Focal Plane of the Spaceborne Camera

  • Park, Jun-Oh;Jang, Won-Kweon;Kim, Seong-Hui;Jang, Hong-Sul;Lee, Seung-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.278-282
    • /
    • 2011
  • We discuss two possible optical noise sources in an electro-optic camera loaded on a low earth orbit satellite. The first noise source was a reflection at the window for signal rays incident upon the window which is placed before the FPA plane. The second noise source came from a reflection at the surface of the FPA cell when the signal flux is not entirely absorbed. We investigate the noise generation processes for two optical noise sources, and a parametric solution is used to estimate the optical noise effects.

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006

  • Mohan, Rahul;Shukla, Sunil Kumar;Anilkumar, N.;Sudhakar, M.;Prakash, Satya;Ramesh, R.
    • ALGAE
    • /
    • 제24권3호
    • /
    • pp.139-147
    • /
    • 2009
  • Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.