• Title/Summary/Keyword: earth science data

Search Result 1,853, Processing Time 0.036 seconds

A Study of Inquiry Tendency of Earth Science Contents presented in North Korean Textbooks (북한 교과서 중 지구과학 내용의 탐구 경향성 분석)

  • Park, KiRak;Park, Hyun Ju
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.188-199
    • /
    • 2019
  • The purpose of this study was to investigate the tendency of inquiry of earth science content presented in North Korean textbooks of the 2013 National curriculum using Romey's method, and to help use as basic data for better understanding earth science education in North Korea. The content of earth science in the text, figure, question, and activity index of textbooks of Natural Science 1 and 2, Chosun Geography 2 of elementary junior high school, and of Geography 1 of advanced junior high school were all analyzed using Romey's method. The results of this study were as follows: First, the atmospheric science question and the astronomy text showed the tendency of inquiry type. Second, the proportion of oceanography was relatively small. Third, there were many non-inquiry questions or excessive inquiry questions, and both types of questions needed to be balanced. Fourth, there were a tendency that did not emphasize inquiry learning. Finally, the quantitative and qualitative level of inquiry tendency should be improved. In this paper, we propose to use a qualitative method when analyzing earth science content in North Korean textbooks, and suggested that we should further study the comparative analysis of inquiry tendency of earth science content using South and North Korean textbooks.

TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER (지구저궤도 GPS 수신기의 시험 및 성능 분석 방법)

  • Chung Dae-Won;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. Recently most of satellites use GPS receiver as navigation solution for finding satellite position. However, the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation. Post-processing concepts such as Precise Orbit Determination (POD) are recently applied to satellite data processing to improve satellite position accuracy. The POD uses raw measurement data instead of navigation solution of GPS receiver. The performance of raw measurement data depends on raw measurement data accuracy and tracking loop algorithm of GPS receiver. In this paper, a method for evaluating performance of raw measurement data is suggested. Test environment and procedure of the low earth orbit satellite acquiring for navigation solution of GPS receiver and navigation solution of POD are described. In addition, accuracy on navigation solution of GPS receiver, raw measurement data, and navigation solution of POD are analyzed. The proposed method can be applicable to general low earth orbit satellite.

Measuring the Earth's Size Using the Sun's Altitude and The Responses

  • Chae, Dong-Hyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • This study was created to resolve the problems embedded in the formal measuring experiments to determine the earth's size in the current curriculum, to develop an updated measuring experiment to determine the earth's size and to establish its effect. For this study, pre-service elementary teachers, who had attempted the experiment of measuring the size of the earth when they were in middle school, performed the experiments in the existing national curriculum, and their responses, collected through in-depth interviews, were examined. To begin with, the pre-service elementary teachers conducted the experiment of measuring the earth size and they recorded the problems while performing it. At the end, an in-depth interview was administered. Based on the problems, an updated measuring experiment to determine the earth's size was suggested to be applied to the same contents and be analyzed through the in-depth interviews. Common themes which were mutually categorized and analyzed by the two researchers were obtained based on the records produced while conducting the experiment and the in-depth interview data. The teachers mentioned that the experiments for measuring the size of the earth in the current curriculum gave rise to difficulties in measuring precisely the angles between the string and the post. Also, there has been a scientific contradiction that solar altitudes were increased in a high latitude region, instead of decreased. For this reason, an alternative method has been developed to measure the earth's size using the distance and the solar altitude difference of two places. The teachers all agreed that by using the updated measuring experiment, they can acquire more precise measurements and it is easier, faster and consequently more effective than the existing methods. Through the results of this study, I suggest that the newly developed experiment by the researchers can overhaul the problems of the current experiments and it can be an effective alternative to the current experiment.

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

Orientations and Execution of Beginning Secondary Science Teachers' Teaching Practices: Motivating and Understanding Students (초임 중등 과학 교사의 교수활동에 대한 지향과 실행: 동기 유발과 학생 이해를 중심으로)

  • Kwon, Hong-Jin;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.289-301
    • /
    • 2006
  • The purpose of this study is to investigate beginning secondary science teachers' teaching practices in terms of motivating and understanding students. Six first-year teachers participated in this study. Data were collected by classroom observations and structured interviews. Instructional materials used during the class were also collected to understand teaching practice. Lessons observed were video-tape recorded and the teachers were interviewed. Video- and audio-tape recording were transcribed. The framework, developed by Knowles Project Team of Michigan State University, was adopted and revised according to Korean classroom context and employed as an analytical tool for teaching practices. The beginning secondary science teachers intention ranged from 'Managing Work' to 'School Science.' No teachers revealed 'Reform Science Teaching' orientation. For the execution of science lessons, one teacher with 'Managing Work' orientation showed 'expert' level of execution, but the others executed at a 'novice' level. Beginning science teachers need to be guided and informed about 'Reform Science Teaching' for motivating and understanding students to develop professionally.

Numerical Study on the Correction of Sea Effect in Magnetotelluric (MT) Data

  • Yang, Jun-Mo;Yoo, Hai-Soo
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.550-564
    • /
    • 2009
  • When magnetotelluric (MT) data are obtained in the vicinity of the coast, the surrounding seas make it difficult to interpret subsurface structure, especially the deep part of the subsurface. We introduce an iterative method to correct the sea effect, based on the previous topographic correction method that removes the distortion due to topographic changes in seafloor MT data. The method first corrects the sea effect in observed MT impedance, and then inverts corrected response in a model space without the sea. Due to mutual coupling between the sea and the subsurface structure, the correction and inversion steps are iterated until the changes in each result become negligible. The method is tested for 1- and 2-D structures using synthetic MT data produced by 3-D forward modeling including surrounding seas. In all cases, the method closely recovers the true structure assumed to generate synthetic responses after a few iterations.

COMPARISON OF ATMOSPHERIC CORRECTION ALGORITHMS FOR DERIVING SEA SURFACE TEMPERATURE AROUND THE KOREAN SEA AREA USING NOAA/AVHRR DATA

  • Yoon, Suk;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • To retrieve Sea Surface Temperature(SST) from NOAA-AVHRR imagery the spilt window atmospheric correction algorithm is generally used. Recently, there have been various new algorithms developed to process these data, namely the variable-coefficient split-window, the R54 transmittance-ratio method, fixed-coefficient nonlinear algorithm, dynamic water vapour (DWV) correction method, Dynamic Water Vapour and Temperature algorithm (DWVT). We used MCSST (Multi-Channel Sea surface temperature) and NLSST(Non linear sea surface temperature) algorithms in this study. The study area is around the Korea sea area (Yellow Sea). We compared and analyzed with various methods by applying each Ocean in-situ data and satellite data. The primary aim of study is to verify and optimize algorithms. Finally, this study proposes an optimized algorithm for SST retrieval.

  • PDF

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

Statistical Analyses of the Flowering Dates of Cherry Blossom and the Peak Dates of Maple Leaves in South Korea Using ASOS and MODIS Data

  • Kim, Geunah;Kang, Jonggu;Youn, Youjeong;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.57-72
    • /
    • 2022
  • In this paper, we aimed to examine the flowering dates of cherry blossom and the peak dates of maple leaves in South Korea, by the combination of temperature observation data from ASOS (Automated Surface Observing System) and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate Resolution Imaging Spectroradiometer). The more recent years, the faster the flowering dates and the slower the peak dates. This is because of the impacts of climate change with the increase of air temperature in South Korea. By reflecting the climate change, our statistical models could reasonably predict the plant phenology with the CC (Correlation Coefficient) of 0.870 and the MAE (Mean Absolute Error) of 3.3 days for the flowering dates of cherry blossom, and the CC of 0.805 and the MAE of 3.8 for the peak dates of maple leaves. We could suppose a linear relationship between the plant phenology DOY (day of year) and the environmental factors like temperature and NDVI, which should be inspected in more detail. We found that the flowering date of cherry blossom was closely related to the monthly mean temperature of February and March, and the peak date of maple leaves was much associated with the accumulated temperature. Amore sophisticated future work will be required to examine the plant phenology using higher-resolution satellite images and additional meteorological variables like the diurnal temperature range sensitive to plant phenology. Using meteorological grid can help produce the spatially continuous raster maps for plant phenology.

The Experiences of High School Students about Astronomical Observation Activities Seen through the Movement of Deleuzian "Becoming" (들뢰즈의 '되기' 운동으로 바라본 고등학생들의 천체 관측 활동 경험)

  • Seok-Young Hong;Youngsun Kwak
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.147-156
    • /
    • 2024
  • Science practice is a process of establishing new relationships with 'foreign things' such as learning objects or tools for observation and measurement. Since the practice of science in major subjects has been increasingly emphasized, we sought to understand the meaning co-created by students and numerous materials who have experienced astronomical observation as a Deleuzian experience of "becoming". We collected activity logs and photographic data written by 17 students participating in astronomical observation activities at "A" High School, and conducted in-depth interviews with the students. We assessed the collected data by reconstructing a situation analysis. The main research results include the students' existential-epistemological 'becoming' process: 1) discovering newness through repetition, 2) becoming an 'explanation machine' to convey the affect of astronomical observation activities, 3) breaking out of a stabilized territory, and crossing a threshold. Based on the results, we suggested the need for follow-up research on the practices and new experimental approaches of teachers in earth science education.