• Title/Summary/Keyword: earth and space

Search Result 1,803, Processing Time 0.031 seconds

Current Status of Space Debris and Introduction of the KARI Conjunction Assessment Process (우주파편 현황 및 항우연의 우주파편 충돌평가 방법 소개)

  • Choi, Su-Jin;Jung, In-Sik;Chung, Dae-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 2011
  • Space debris is the collection of objects in orbit around Earth that were created by humans but no longer serve any useful purpose. Since plenty of spacecrafts were launched in space after 1957, the number of space debris has been increased. According to USSTRATCOM, the number of space debris which are bigger than 10cm is more than 15,000. Recently two critical events were occurred. Which one was that China shot down their satellite using missile and the other was that t o satellite, Iridium 33 and Cosmos 2251, collided in space. Space debris environment in which KOMPSAT-2 is operating has been severe. This paper presents the status of space debris and international activity, and the comparison of conjunction assessment process between Korea Aerospace Research Institute and abroad satellite operation center.

  • PDF

Space Physics Sensor on KOMPSAT-1

  • Min, Kyoung-Wook;Choi, Young-Wan;Shin, Young-Hoon;Lee, Jae-Jin;Lee, Dae-Hee;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.355-360
    • /
    • 1998
  • A small package of plasma instruments, Space Physics Sensor, will monitor the space environment and its effects on microelectronics in the low altitude region as it operates on board the KOMPSAT-1 from 1999 over the maximum of the solar cycle 23. The Space Physics Sensor (SPS) consists of two parts: the Ionospheric Measurement Sensor (IMS) and the High Energy Particle Detector (HEPD). IMS will make in situ Measurements of the thermal electron density and temperature, and is expected to provide a global map of the thermal electron characteristics and the variability according to the solar and geomagnetic activity in the high altitude ionosphere of the KOMPSAT-t orbit. HEPD will measure the fluxes of high energy protons and electrons, monitor the single event upsets caused by these energetic charged particles, and give the information of the total radiation dose received by the spacecraft. The continuous operation of these sensors, along with the ground measurements such as incoherent scatter radars, digital ionosondes and other spacecraft measurements, will enhance our understanding of this important region of practical use for the low earth orbit satellites.

  • PDF

Development of an Automatic System of 36 cm Telescope for the Web-based Teaching in Astronomical Observation (인터넷 활용 천체관측 교육을 위한 36 cm 망원경의 자동화 시스템 개발)

  • Kim, Hee-Soo;Yang, Jong-Woo;Kim, Hyouk;Han, In-Woo;Kang, Nam-Hwa
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.431-444
    • /
    • 2007
  • An automatic system of 36 cm telescope for the Web Based astronomy education was developed. The tracking accuracy of this system was about 1"/min. The pointing accuracy was ${\pm}10"$ in the right ascension direction, ${\pm}20"$ in the declination direction. These results will be improved continuously. The results of IRAF image analysis for the pilot observation data were stable, which means that this remote astronomical observation system is suitable f3r the education of astronomical observation.

THE CYCLIC VARIATION OF SOLAR PHOTOSPHERIC INTENSITY FROM SOHO IMAGES

  • Jeong, Dong-Gwon;Park, Hyungmin;Moon, Byeongha;Oh, Suyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.105-109
    • /
    • 2017
  • The well-known solar cycle controls almost the entire appearance of the solar photosphere. We therefore presume that the continuous emission of visible light from the solar surface follows the solar cyclic variation. In this study, we examine the solar cyclic variation of photospheric brightness in the visible range using solar images taken by the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI). The photospheric brightness in the visible range is quantified via the relative intensity acquired from in the raw solar images. In contrast to total solar irradiance, the relative intensity is out of phase with the solar cycle. During the solar minimum of solar cycles 23-24, the relative intensity shows enhanced heliolatitudinal asymmetry due to a positive asymmetry of the sunspot number. This result can be explained by the strength of the solar magnetic field that controls the strength of convection, implying that the emission in the visible range is controlled by the strength of convection. This agrees with the photospheric brightness increasing during a period of long spotless days.

The Closed Recycling System for Combination fish Culture and Hydroponic Vegetable Production

  • Takahiro-SAITO;Koji-OTSUBO;Lee, Gonigin;Seishu--TOJO;Kengo-WATANABE;I, Fusakazu-A
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.584-590
    • /
    • 1993
  • The constructed closed recycling system discussed in this technical report will be economically viable in future for the production of fish and vegetable in earth, space station and space colony, further, it will contribute a lot in the prevention of pollution in the world's ecological system. To make combined system, water management (Nitrification) is required, and it took 45 days to breed microorganism which facilitates this process. After this period , the recycle was confirmed to be working .Using derived equations, the expected nutrient characteristics of waste water were determined and it was found that the resulting nutrient balance was almost same as that in hydroponic solution when KOH was added to maintain pH level. Reverse osmosis (RO) system could solve the problem of the low nutrient concentration . It was found that plants grow well in fish waste water which was produced using RO system. RO system could combine fish and plant production through the advantageous use of separated high concentration water for plant and permeated water for fish in integrated combined system.

  • PDF

Effects of asymmetric plasmasphere on MHD waves in a three-dimensional dipolar magnetosphere

  • Roh, Sang-Il;Lee, Dong-Hun;R. E. Denton;K. Takahashi;J. Goldstein;A. Keiling;R. A. King;K. Yumoto
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.39-39
    • /
    • 2003
  • The plasmaspheric region shows relatively strong longitudinal asymmetry in the sense that the location of the plasmapause and the density distribution significantly vary with respect to local time, and this asymmetry effect has been neglected in previous magnetospheric ULF wave studies. In this study, we numerically examine the MHD wave properties of field line resonances (FLRs) and Pi2 pulsations when the inner magnetosphere is assumed to be asymmetric. We use the dipole magnetic field model, but our density model is based on. observational data from the IMAGE satellite. We assume an impulsive input in the magnetotail, which can be associated with a substorm onset. Our results suggest that local FLRs appear in both the radial and azimuthal oscillations owing to the asymmetry. Plasmaspheric Pi2 signals appear in the compressional component, but they are more strongly affected by ambient plasmaspheric structure than the FLRs. We compare our results with the observational data of Pi2 events.

  • PDF

Spaceborne Gravity Sensors for Continental Hydrology and Geodynamic Studies

  • Shum C. K.;Han Shin-Chan;Braun Alexander
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • The currently operating NASA/GFZ Gravity Recovery and Climate Experiment (GRACE) mission is designed to measure small mass changes over a large spatial scale, including the mapping of continental water storage changes and other geophysical signals in the form of monthly temporal gravity field. The European Space Agency's Gravity field and steady state Ocean Circulation Explorer (GOCE) space gravity gradiometer (SGG) mission is anticipated to determine the mean Earth gravity field with an unprecedented geoid accuracy of several cm (rms) with wavelength of 130km or longer. In this paper, we present a summary of present GRACE studies for the recovery of hydrological signals in the Amazon basin using alternative processing and filtering techniques, and local inversion to enhance the temporal and spatial resolutions by two-folds or better. Simulation studies for the potential GRACE detection of slow deformations due to Nazca-South America plate convergence and glacial isostatic adjustment (GIA) signals show that these signals are at present difficult to detect without long-term data averaging and further improvement of GRACE measurement accuracy.

Sensitivity Analysis of the Optical System for UV-IR Space Telescope

  • Kim, Sanghyuk;Chang, Seunghyuk;Pak, Soojong;Jeong, Byeongjoon;Kim, Geon Hee;Hammar, Arvid
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.56.4-57
    • /
    • 2015
  • We present the optical design and a sensitivity analysis for a wide field of view (FOV) instrument operating at UV and IR wavelengths. The ongoing investigation is performed in collaboration with Omnisys Instruments (Sweden) and focuses on a telluric-limb-viewing instrument that will fly in a low Earth orbit to study mesospheric wave structures over a wide range of horizontal scales in the altitude range 80 - 100 km. The instrument has six wavelength channels which consist of 4 channels of IR and 2 of UV. We are proposing an optical design based on three mirror aplanatic off-axis reflective system. The entrance pupil diameter and effective focal length are 45 mm and 270 mm, respectively. The FOV is $5.5^{\circ}{\times}1^{\circ}$ and the secondary mirror is set for stop. The optical specification is required to have an encircled energy of at least 80 % within a diameter of 21 um. We performed sensitivity analysis for the longest wavelength of 772 nm in consideration of the diffraction limit of system. The results show that tolerance limits for positions and angles of the mirrors are not very sensitive compared with typical error budgets of manufacturing and assembling process. The secondary mirror has the most sensitive tolerance for surface figure of 250 nm in root-mean-square.

  • PDF

The Effects of Moon's Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

  • Rahoma, Walid A.;Abd El-Salam, Fawzy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.285-294
    • /
    • 2014
  • The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth's satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can't be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

Superconducting Low-frequency Gravitational-wave Telescope (SLGT): pilot study status report

  • Kim, Chunglee;Ahn, Sang-Hyeon;Bae, Yeong-Bok;Kang, Gungwon;Kim, Whansun;Oh, John J.;Oh, Sang Hoon;Park, Chan;Son, Edwin J.;Lee, Yong Ho;Paik, Ho Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.52.1-52.1
    • /
    • 2017
  • The discovery of GW150914, black hole - black hole merger via gravitational waves (GWs) opened a new window to observe the Universe. GW frequencies from heavenly bodies and early Universe are expected to span between sub-nHz up to kHz. At present, GW detectors on Earth (LIGO, Virgo, KAGRA, LIGO-India) aims frequency ranges between 10-2000 Hz. The space-borne GW detector and Pulsar Timing Array targets mHz and nHz sources. Starting in March 2017, the KKN (KASI-KISTI-NIMS) collaboration launched a pilot study of SLGT (Superconducting Low-frequency Gravitational-wave Telescope). This project is funded by NST (Korea Institute of Science and Technology). The main detection bands expected for SLGT ranges between 0.1-10Hz, which is complementary of LIGO-type detectors and LISA for multi-band GW observation. We will present an overview of the SLGT project and report the status of the NST pilot study. We will also present prospective of GW astronomy with SLGT.

  • PDF