• Title/Summary/Keyword: earth and space

Search Result 1,803, Processing Time 0.029 seconds

Relative contribution of geomagnetic and CO2 effects to global temperature anomaly

  • Kim, Jinhyun;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.79.3-80
    • /
    • 2016
  • We have investigated the correlation analysis between global temperature anomaly and two main factors: geomagnetic activity (aa index) of Earth external factor and CO2 of Earth internal factor. For this, we used NOAA Global Surface Temperature anomaly (Ta) data from 1868 to 2015. The aa index indicates the geomagnetic activity measured at two anti-podal subauroral stations (Canberra Australia and Hartland England) and the CO2 data come from historical ice core records and NOAA/ESRL data. From the comparison between (Ta) and aa index, we found several interesting things, First, the linear correlation coefficient between two parameters increases until 1985 and then decreases rapidly. Second, the scattered plot between two parameters shows a boundary of the correlation tendency (positive and negative correlation) near 1985. A partial correlation of (Ta) and two main factors (aa index, CO2) also shows that the geomagnetic effect (aa index) is dominant until about 1985 and the CO2 effect becomes much more important after then. These results indicate that the CO2 effect become very an important factor since at least 1985. For a further analysis, we simply assume that Ta = Ta(aa)+Ta(CO2) and made a linear regression between (Ta) and aa index from 1868 to 2015. A linear model is then made from the linear regression between energy consumption (a proxy of CO2 effect) and Ta-Ta(aa) since 1985. Our results will be discussed in view of the prediction of global warming.

  • PDF

Development of Korean Preliminary Lunar Mission Design Software (한국형 달탐사 임무 예비 설계 소프트웨어의 개발)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Shim, Eun-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.357-367
    • /
    • 2008
  • Preparing for future Korean Lunar missions, preliminary Lunar mission design software is developed using a impulsive thrusting method. Developed software is capable of design and analysis every required mission phases to design Lunar mission, including the Earth departure, Lunar transfer, Lunar arrival and mission operation phases. Also, assuming that KSLV-II is selected as a launch vehicle, future Korean Lunar explorer's mass budget is estimated based on driven optimal trajectory characteristics. Tracking analysis is also performed using Deep Space Network including angle geometry analysis between Earth - Moon - Lunar explorer - Sun which are very important for communication, solar panel pointing strategy and eclipse analysis when Lunar missions are under designing phase.

Plasma Flows and Bubble Properties Associated with the Magnetic Dipolarization in Space Close to Geosynchronous Orbit

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • In this paper we examine a total of 16 dipolarization events that were observed by THEMIS spacecraft in space close to geosynchronous orbit, r < ${\sim}7\;R_E$. For the identified events, we examine the characteristics of the plasma flows and associated bubbles as defined based on $pV^{5/3}$, where p is the plasma pressure and V the volume of unit magnetic flux. First, we find that the flow speed in the near-geosynchronous region is very low, mostly within a few tens of km/s, except for a very few events for which the flow can rise up to ~200 km/s but only very near the dipolarization onset time. Second, the bubble parameter, $pV^{5/3}$, decreases by a much smaller factor after the dipolarization onset than for the events in the farther out tail region. We suggest that the magnetic dipolarization in the near-geosynchronous region generates or is associated with only very weak plasma bubbles. Such bubbles in the near-geosynchronous region would penetrate earthward only by a small distance before they stop at an equilibrium position or drift around the Earth.

Numerical study on the connection type of inner-slab in double deck tunnel (복층터널 내부슬래브의 연결형식에 관한 수치해석적 연구)

  • Lee, Ho-Seong;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.441-451
    • /
    • 2016
  • This study analyzed behavior of the segment lining considering connection type between inner-slab and segment lining for a double deck tunnel by Shield TBM. In order to establish the design requirements of inner-slab and segment lining in double deck tunnel, inner structure of double deck tunnel at each purpose was analyzed and compared connection type between inner-slab and segment lining. And analyses have been carried out through the beam-spring model by MIDAS Civil 2012. As a result of this study, inner-slab, connection type of between inner-slab and segment lining and Lateral earth pressure coefficients were analyzed to verify the significant design factors.

Stellar Source Selections for Image Validation of Earth Observation Satellite

  • Yu, Ji-Woong;Park, Sang-Young;Lim, Dong-Wook;Lee, Dong-Han;Sohn, Young-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.273-284
    • /
    • 2011
  • A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

Formulas of Position and Velocity Perturbation for Hyperbolic Orbit and Its Application to Flyby Anomaly

  • Kim, Young-Kwang;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.26.2-26.2
    • /
    • 2011
  • Flyby anomaly (unexpected energy increase during Earth Gravity Assists) indicates existence of an unknown non-conservative perturbation which affects hyperbolic trajectories. This presentation focuses on first order position and velocity perturbation formulas derived in terms of classical orbital element variations for hyperbolic orbit. By using both the perturbation formulas and numerical approach, we analyze effects of hypothetical acceleration models proposed by Hasse (2009), Lewis (2009), Gerrad and Sumner (2008), and Busack (2007). Based on analysis of perturbation effect on low earth orbit, we find that typical position perturbation is about 10m which is much larger than current orbit determination accuracy. From this, we deduce that anomalous acceleration only affects hyperbolic orbit or behaves differently in bound orbit. On the other hand, based on analysis of perturbation effects on hyperbolic trajectories, we find that position and velocity perturbations are highly different from acceleration models, and all of proposed models fail to explain observed range and Doppler data. Thus, it can be concluded that not only energy variations but also kinematics gives us crucial clues on the flyby anomaly, and kinematical characteristic should be considered in modeling flyby anomaly.

  • PDF

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

Flux calibration method for narrow band imaging observation

  • Ahn, Hojae;Pak, Soojong;Kang, Wonseok;Kim, Taewoo;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2018
  • Flux calibration for narrow band photometric data gives us an opportunity to get a line flux of extended targets. We developed flux calibration processes for narrow band photometry using broad band filters as a continuum indicator. We derived parameters for color correction and zero point correction including color terms. Applying our method, we successfully subtracted continuum emissions and calibrated the emission lines from an FU Ori type object, V960 Mon.

  • PDF

Fuel-Optimal Altitude Maintenance of Low-Earth-Orbit Spacecrafts by Combined Direct/Indirect Optimization

  • Kim, Kyung-Ha;Park, Chandeok;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2015
  • This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.

SATELLITE ATTITUDE SENSING MODEL AND THEIR S/W DEVELOPMENT (인공위성 자세감지 모델과 그 S/W 개발)

  • 김영신;안웅영;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • We have developed an attitude sensing S/W system, one of modules of Mission Analysis System(MAS), which simulates attitude sensing data as almost the same as the real sensor of a satellite in orbit. When attitude elements($alpha,delta$) of a satellite and positions of Earth, Moon, and Sun are given, the S/W system calculates look angles and dihedral angles of each celestial bodies relative to the rotations axis of the satellite. It consists of two sub-modules : One is ephemeris service module which consider the perturbations of four planets(Venus, Mars, Jupiter, Saturn) for positions of Sun and Moon and 4 $\times$4 earth gravitational potential terms for a satellite's position. The other is attitude simulation module which generates attitude sensing data. Varying the rotational axis of a satellite and it's orbital elements, we simulated the generating attitude sensing data with this S/W system and discussed their results.

  • PDF