• Title/Summary/Keyword: earth and space

Search Result 1,800, Processing Time 0.034 seconds

The Analysis of Statistics and Scientific Inquiries Types in Korea Astronomy and Space Science Institute Q&A Service (한국천문연구원 질문상자의 통계 및 과학탐구 질문유형 분석)

  • Yim In Sung;Sung Hyun Il;Sohn Sangmo;Ahn Young Sook;Kim Bong Gyu;Choe Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.551-559
    • /
    • 2005
  • The Q&A service of the official Korea Astronomy and Space Science Institute (KASI) webpage was installed in 2000 and have been actively used since then. In this paper, we analyze the questions asked through the Q&A service and the number of inquiries with the aid of statistical methods. We also study the contents of the questions. Specifically, we have created statistics of questions and inquiries that go monthly and yearly, and have developed categories to analyze the characteristics of questions in regards to their cognitive aspects. Each question is categorized into two elements based on their recognitive aspect: science knowledge or science study. Each element also has sub-categories that help readers understand the characteristics of the questions. For the analysis, we used a sample consisted of questions from July to December, 2004. Through this study, we achieved a better understanding of the questions asked by the Q&A service. We are planning to improve the quality of the Q&A service by extending the size of the FAQ(frequently asked questions). Throughout this study, we find that the number of questions are increasing with time, and the overall quality of the questions is improving. As we expect the number of people using our Q&A service to increase and the questions to get more difficult to answer, development of improved content is required.

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

Magnitude Standardization Procedure for OWL-Net Optical Observations of LEO Satellites

  • Roh, Dong-Goo;Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Park, Sun-Youp;Park, Maru;Choi, Young-Jun;Bae, Young-Ho;Park, Young-Sik;Jang, Hyun-Jung;Cho, Sungki;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.

A Study on a Project Management Improvement Method for the Development of Next Generation Geostationary Earth Observation Satellite System (차세대 정지궤도 지구관측 위성시스템 개발 사업관리 개선 방안에 관한 연구)

  • Choi, Won Jun;Eun, Jong Won
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2015
  • These days, satellite core technologies are being developed as a way to provide various information by considering simultaneously sending, wide area covering, highly precide, and anti-disaster technologies. Not only global positioning, and image but also space launcher, satellite bus, satellite payload, earth station are being convergently developed in a different technological field. Especially, it is required a lot of initial investing expenditure to provide the Earth observational information service based on the space technologies. Such a trend and change of satellite technologies Korea has realized the necessity for the domestic independent development of next generation earth observation satellites, and are preparing the profound items such as a detailed implementation plan for the efficient development project. Like the satellite advanced countries, it should be transparently carried out that an efficient implementation of the developing target related to the geostationary earth observation satellite development, establishment of technological auditing function and quality assurance system, implementation plan, progressing courses and results of the satellite development program by way of planning, evaluation and management. For these things cited above, it is necessary to operate systematically and continuously the professional structural system by the governmental department in order to control the geostationary earth observation satellite development project. Therefore, this study proposes a development project management improvement method of the Korea next generation geostationary earth observation satellite based on the development project management system of the domestic geostationary satellite system.

Rotational and Observational Properties of NEA and Asteroid Family

  • Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.96.1-96.1
    • /
    • 2014
  • The rotation of asteroids can help reveal not only the fundamental characteristics of asteroids but also the origin and evolution of our Solar System. From the photometric observations for NEA 162173 (1999 JU3) and Maria family asteroids using 0.5 m- to 2 m- class telescopes at 10 observatories in the northern hemisphere, I obtained a total of 260 lightcurves for 97 asteroids and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. For the sake of efficiency, I developed an observation scheduler, SMART (Scheduler for Measuring Asteroid RoTation) and a photometric analysis software subsystem, ASAP (Asteroid Spin Analysis Package). Based on the lightcurve analysis of NEA 162173 (1999 JU3) and Maria family asteroids, 1) I present the rotational and observational characteristics of 1999 JU3 and provided the Hayabusa-2 Science team with the information on pole orientations, 2) I investigated correlations among rotational periods, amplitudes of lightcurves, and sizes, and conclude that the rotational properties of old-type family asteroids have been changed considerably by the YORP effect. 3) Finally, I found the Yarkovsky footprints on the Maria asteroid family and estimated that approximately 37 to 75 Maria family asteroids larger than 1 km have entered the near-Earth space every 100 Myr. This study should reveal the collisional history and transport route of the members from the resonance region to the near Earth space, for the first time.

  • PDF

OCI and ROCSAT-1 Development, Operations, and Applications

  • Chen, Paul;Lee, L.S.;Lin, Shin-Fa
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.367-375
    • /
    • 1999
  • This paper describes the development, operations, and applications of ROCSAT-l and its Ocean Color Imager (OCI) remote-sensing payload. It is the first satellite program of NSPO. The satellite was successfully launched by Lockheed Martin's Athena on January 26, 1999 from Cape Canaveral, Florida. ROCSAT-l is a Low Earth Orbit (LEO) experimental satellite. Its circular orbit has an altitude of 600km and an inclination angle of 35 degrees. The satellite is designed to carry out scientific research missions, including ocean color imaging, experiments on ionospheric plasma and electrodynamics, and experiments using Ka-band (20∼30GHz) communication payloads. The OCI payload is utilized to observe the ocean color in 7 bands (including one redundant band) of Visible and Near-Infrared (434nm∼889nm) range with the resolution of 800m at nadir and the swath of 702km. It employs high performance telecentric optics, push-broom scanning method using Charge Coupled Devices (CCD) and large-scale integrated circuit chips. The water leaving radiance is estimated from the total inputs to the OCI, including the atmospheric scattering. The post-process estimates the water leaving radiance and generates different end products. The OCI has taken images since February 1999 after completing the early orbit checkout. Analyses have been performed to evaluate the performances of the instrument in orbit and to compare them with the pre-launch test results. This paper also briefly describes the ROCSAT-l mission operations. The spacecraft operating modes and ROCSAT Ground Segment operations are delineated, and the overall initial operations of ROCSAT-l are summarized.

TELEMETRY AND TELECOMMAND SYSTEM OF LOW-EARTH-ORBIT MICROSATELLITE, KITSAT-1 AND 2 (저궤도 소형위성 우리별 1, 2호의 원격검침 및 명령부)

  • 김성헌;성단근;김형명;최순달;네빌빈
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.30-40
    • /
    • 1996
  • The telecommand system of KITSAT micorsatellite receives commands from ground stations or on-board computers. It decodes, validates and delivers commands to sub-system. The telemetry system is to collect, process and format satellite housekeeping and mission data for use by on-board computer and ground station. It is crucial for the telemetry and telecommand system to have high reliability since the spacecraft operation is mostly based on the function of this system. The telemetry and telecommand(TTC) systems for KITSAT-1 and 2 had been developed under the consideratin of the space environment of Low-Earth-Orbit and the limited mass, volume and power of micorsatellite. Since both satellites were launched in August 1992 and September 1993 respectively, the have shown to be working successfully as well as the TTC systems on-board both satellites.

  • PDF

Storm Sudden Commencements Without Interplanetary Shocks

  • Park, Wooyeon;Lee, Jeongwoo;Yi, Yu;Ssessanga, Nicholas;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism - Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than -30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

THERMAL MODELS AND FAR INFRARED EMISSION OF ASTEROIDS

  • KIM SAM;LEE HYUNG MOK;NAKAGAWA TAKAO;HASEGAWA SUNAO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • ASTRO-F /FIS will carry out all sky survey in the wavelength from 50 to 200 ${\mu}m$. At far infrared, stars and galaxies may not be good calibration sources because the IR fluxes could be sensitive to the dust shell of stars and star formation activities of galaxies. On the other hand, asteroids could be good calibration sources at far infrared because of rather simple spectral energy distribution. Recent progresses in thermal models for asteroids enable us to calculate the far infrared flux fairly accurately. We have derived the Bond albedos and diameters for 559 asteroids based on the IRAS and ground based optical data. Using these thermal parameters and standard thermal model, we have calculated the spectral energy distributions of asteroids from 10 to 200 ${\mu}m$. We have found that more than $70\%$ of our sample asteroids have flux errors less than $10\%$ within the context of the best fitting thermal models. In order to assess flux uncertainties due to model parameters, we have computed SEDs by varing external parameters such as emissivity, beaming parameter and phase integral. We have found that about 100 asteroids can be modeled to be better than $5.8\%$ of flux uncertainties. The systematic effects due to uncertainties in phase integral are not so important.

Review of the History of Animals that Helped Human Life and Safety for Aerospace Medical Research and Space Exploration

  • Lee, Won-Chang;Kim, Kyu-Sung;Kwon, Young Hwan
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • In 2019, the Aerospace Medical Association of Korea celebrated its 30th anniversary. On the other side of the world, it was also the 62nd anniversary of Russian launch Sputnik 1 of the world's first artificial satellite on October 4, 1957. In additionally, the world, especially the United States was shocked, when on November 3, 1957, Sputnik 2 blasted into Earth orbit with a dog named "Laika"; it was the role of veterinarian's activities for aerospace medical research and exploration. Veterinarians (Vets) are responsible for the health of all the animals for aerospace medicine whether on the ground or in space. Vets can enhance animal and public health and this knowledge of Vets and astronauts can extend their mission durations, go to nearby Earth Asteroids, Mars and other heavenly bodies to study their living and non-living characteristics. This review article is the brief history of the original growth of the veterinarian's activities for the aerospace medical research, in order to stimulate future strategies for improvements in the space life sciences and exploration.