• 제목/요약/키워드: earth and space

검색결과 1,803건 처리시간 0.025초

우주기상 데이터를 활용한 성간물체 관측 가능성의 제고 (Maximizing the Probability of Detecting Interstellar Objects by using Space Weather Data)

  • Kwon, Ryun Young;Kim, Minsun;Hoang, Thiem
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.62.1-62.1
    • /
    • 2021
  • Interstellar objects originate from other stellar systems. Thus, they contain information about the stellar systems that cannot be directly explored; the information includes the formation and evolution of the stellar systems and the possibility of life. The examples observed so far are 1l/Oumuamua in 2017 and 2l/Borisov in 2019. In this talk, we present the possibility of detecting interstellar objects using the Heliospheric Imagers designed for space weather research and forecasting by observing solar wind in interplanetary space between the Sun and Earth. Because interstellar objects are unpredictable events, the detection requires observations with wide coverage in spatial and long duration in temporal. The near-real time data availability is essential for follow-up observations to study their detailed properties and future rendezvous missions. Heliospheric Imagers provide day-side observations, inaccessible by traditional astronomical observations. This will dramatically increase the temporal and spatial coverage of observations and also the probability of detecting interstellar objects visiting our solar system, together with traditional astronomical observations. We demonstrate that this is the case. We have used data taken from Solar TErrestrial RElation Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) HI-1. HI-1 is off-pointed from the Sun direction by 14 degrees with 20 degrees of the field of view. Using images observed from 2007 to 2019, we have found a total of 223 small objects other than stars, galaxies, or planets, indicative of the potential capability to detect interstellar objects. The same method can be applied to the currently operating missions such as the Parker Solar Probe and Solar Orbiter and also future L5 and L4 missions. Since the data can be analyzed in near-real time due to the space weather purposes, more detailed properties can be analyzed by follow-up observations in ground and space, and also future rendezvous missions. We discuss future possible rendezvous missions at the end of this talk.

  • PDF

Forbush Decreases Observed by the LRO/CRaTER

  • 손종대;오수연;이유;김어진;이주희
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.120.1-120.1
    • /
    • 2012
  • The Lunar Reconnaissance Orbiter (LRO) launched on June 16, 2009 has six experiments including of the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard. The CRaTER instrument characterizes the radiation environment to be experienced by humans during future lunar missions. The CRaTER instrument measures the effects of ionizing energy loss in matter specifically in silicon solid-state detectors due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCRs) after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER instrument houses a compact and highly precise microdosimeter. It measures dose rates below one micro-Rad/sec in silicon in lunar radiation environment. Forbush decrease (FD) event is the sudden decrease of GCR flux. We use the data of cosmic ray and dose rates observed by the CRaTER instrument. We also use the CME list of STEREO SECCHI inner, outer coronagraph and the interplanetary CME data of the ACE/MAG instrument.We examine the origins and the characteristics of the FD-like events in lunar radiation environment. We also compare these events with the FD events on the Earth. We find that whenever the FD events are recorded at ground Neutron Monitor stations, the FD-like events also occur on the lunar environments. The flux variation amplitude of FD-like events on the Moon is approximately two times larger than that of FD events on the Earth. We compare time profiles of GCR flux with of the dose rate of FD-like events in the lunar environment. We figure out that the distinct FD-like events correspond to dose rate events in the CRaTER on lunar environment during the event period.

  • PDF

소행성 탐사선의 발사시기 산출 방안에 관한 연구 (A Study on the Method of Calculating the Launch Period of the Asteroid Exploration Mission)

  • 김방엽;류동영
    • 우주기술과 응용
    • /
    • 제1권3호
    • /
    • pp.302-318
    • /
    • 2021
  • 지구접근 소행성을 목적지로 하는 우주탐사선의 발사 시기를 결정하는 방법에 대하여 기본적인 연구를 수행하였다. 향후, 지구 궤도에 접근하는 소행성을 대상으로 하는 탐사선 임무가 국내에서 진행될 경우에 발사시기를 결정하기 위해서는 전역최적화(global optimization)기법을 적용하여 적절한 해를 구하여야 한다. 이를 위해서는 먼저 각 소행성들의 정확한 궤도 정보가 필요하고. 지구의 공전궤도 정보, 탐사선의 주엔진 성능 정보, 중력보조 기동의 횟수, 최대 비행시간 제한 등의 사전 시나리오가 논의되어야 한다. 또한 최적화의 기준이 우선 결정되어야 한다. 본 논고에서는 이러한 전제 조건과 정보를 바탕으로 PyKEP, EMTG(Evolutionary Mission Trajectory Generator) 등의 오픈소스 경로탐색 프로그램을 사용하여 소행성 탐사선의 발사 시기를 찾는 방안을 연구하였다.

초등 과학과 '지구와 우주' 영역의 STS 내용 분석 (An Analysis of STS Contents in the area of 'The Earth and the Universe' in Elementary Science Subject)

  • 이상균;최성봉;김찬기
    • 대한지구과학교육학회지
    • /
    • 제4권1호
    • /
    • pp.66-73
    • /
    • 2011
  • This study aims to compare and analyze the types of teaching-learning activities, themes and percentage of STS contents in the area of "The Earth and the Universe" in elementary science subject following the 7th Curriculum and 2007 Revised Curriculum, identifying how STS education has changed and their features. First, the number of pages where STS appears in the 2007 revised science textbook has increased over 10% compared to the that of the 7th curriculum. In particular, the number of pages in the 5th and 6th graders increased substantially to 15% and 34%, respectively. Second, as a result of analysis on components of STS, 'applications of science', 'local and community relevance', 'social problem and issues', 'evaluation concerned fir getting and using information' were obtained in the order named for the 7th curriculum; while 'applications of science', 'local and community relevance', 'career awareness' and 'social problem and issues' were obtained in the order named for 2007 revised curriculum. Third, with regard to the analysis on theme areas, the 7th curriculum was found to cover the theme on use of natural resources most frequently, followed by environmental problem, while 2007 revised curriculum to cover environmental problem and effects of technical development most frequently, followed by space development and use of natural resources. Fourth, in the area of STS teaching activities, 'investigation activity' showed highest percentage in 7th curriculum, followed by 'analysis of data', and 'research design', while 'analysis of data' showed highest frequency of appearance, followed by "investigation activity' and 'actual activities' and 'research design' in the order named in 2007 revised curriculum, showing that the area of 'analysis of data' and 'actual activities' increased substantially compared to the 7th curriculum.

LOST TIME: WHEN GIANTS ROAMED THE EARTH

  • Rowan-Robinson, Michael
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.1-4
    • /
    • 2017
  • Some after-dinner thoughts on the giants of infrared space astronomy. I here describe important events in infrared astronomy starting from 1964 when I started working on my PhD. Here I describe how I became involved in IRAS, Infrared Space Observatrory (ISO), Herschel, Spitzer and AKARI, together with important events that led to these great missions.

THE FILAMENTARY WEB OF STAR FORMATION

  • White, Glenn J.;Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;Etxaluze, Mireya;Shibai, Hiroshi
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.201-207
    • /
    • 2012
  • Following the first Public Release of the AKARI Point Source catalogues, we have worked on the production of a new far-infrared All-Sky Diffuse mapping product. In this paper we report first results from the All Sky diffuse maps that will shortly be released to the community, based on analysis of data from the Far Infrared Surveyor ($65{\mu}m-160{\mu}m$) instrument. These data are likely to have a strong impact on studies of extended structures, and the diffuse ISM.

지구궤도 인공위성의 임무기간 중 궤도 열 환경 분석 (Analysis of On-orbit Thermal Environment of Earth Orbit Satellite during Mission Lifetime)

  • 강수진;윤지현;정창훈;박성우
    • 항공우주시스템공학회지
    • /
    • 제14권1호
    • /
    • pp.36-43
    • /
    • 2020
  • 위성 열 설계의 시작은 운용궤도의 열 환경 분석을 통한 최악의 운용 환경을 예측하는 것이다. 위성은 주어진 임무에 맞는 다양한 형태의 운용궤도를 가지기 때문에 노출되는 열 환경 또한 다르다. 따라서, 위성의 궤도조건을 고려한 외부 열 환경 분석이 필수이며, 이를 통해 선정된 위성의 최악의 조건에 대해 열적 안정성을 보장하는 설계를 수행하게 된다. 궤도 열 환경 분석을 위해서는 궤도역학은 물론 우주 열 환경과 위성체 사이의 열 교환 관계에 대한 이해가 필요하다. 이에 본 논문에서는 지구궤도 내 우주 열 환경에 관한 기초자료를 제공하고, 위성체에 유입되는 우주 열 유입량을 계산하는 열 관계식을 서술함으로써 궤도 열 환경 분석의 이해를 돕고자 하였다. 또한, 가상의 위성 예제를 통해 임무기간 중 궤도 열 환경을 분석하는 전반적인 과정을 보였다.