• Title/Summary/Keyword: earth and space

Search Result 1,800, Processing Time 0.028 seconds

DESIGN AND PRELIMINARY TEST RESULTS OF MAGNETOMETERS (MAG/AIM & SIM) FOR SOUNDING ROCKET KSR-III (KSR-III 과학 관측 로켓 자력계(MAG/AIM & SIM)의 초기 시험 모델 개발)

  • KIM HYO-MIN;JANG MIN-HWAN;SON DE-RAC;LEE DONG-HUN;KIM SUN-MI;HWANG SEUNG-HYUN
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.57-64
    • /
    • 2000
  • It is realized that the extraterrestrial matter is in ionized state, plasma, so the matter of this kind behaves as not expected because of its sensitiveness to electric and magnetic fields and its ability to carry electric currents. This kind of subtle change can be observed by an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite, and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control and the Earth's magnetic field measurements for the scientific purpose. In this paper, we present the preliminary design and the test results of the two onboard magnetometers of KARl's (Korea Aerospace Research Institute) sounding rocket, KSR­III, which will be launched during the period of 2001-02. The KSR-III magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector fields with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF

Operation of the Radio Occultation Mission in KOMPSAT-5

  • Choi, Man-Soo;Lee, Woo-Kyoung;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • Korea multi-purpose satellite-5 (KOMPSAT-5) is a low earth orbit (LEO) satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD) requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD) system which consists of a space-borne dual frequency global positioning system (GPS) receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

Linear Instability and Saturation Characteristics of Magnetosonic Waves along the Magnetic Field Line

  • Min, Kyungguk;Liu, Kaijun
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2020
  • Equatorial noise, also known magnetosonic waves (MSWs), are one of the frequently observed plasma waves in Earth's inner magnetosphere. Observations have shown that wave amplitudes maximize at the magnetic equator with a narrow extent in their latitudinal distribution. It has been understood that waves are generated from an equatorial source region and confined within a few degrees magnetic latitude. The present study investigates whether the MSW instability and saturation amplitudes maximize at the equator, given an energetic proton ring-like distribution derived from an observed wave event, and using linear instability analysis and particle-in-cell simulations with the plasma conditions at different latitudes along the dipole magnetic field line. The results show that waves initially grow fastest (i.e., with the largest growth rate) at high latitude (20°-25°), but consistent with observations, their saturation amplitudes maximize within ±10° latitude. On the other hand, the slope of the saturation amplitudes versus latitude revealed in the present study is not as steep as what the previous statistical observation results suggest. This may be indicative of some other factors not considered in the present analyses at play, such as background magnetic field and plasma inhomogeneities and the propagation effect.

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

Deep Space Observatory Technology using Satellite (인공위성을 이용한 심우주 관측 기술)

  • Yoon, Yong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.64-73
    • /
    • 2013
  • In order to observe the deep space more efficiently, a satellite installed with a telescope on earth is needed. Advanced countries in space such as U.S.A and E.U. etc. have obtained and analyzed informations and images of the space from Hubble telescope, Kepler space observatory and Herschel space observatory. This paper studied specifications and operation status of space observation satellite of the several foreign countries and described technologies and plans for the domestic deep space observation satellite.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Large Solar Eruptive Events

  • Lin, R.P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Major solar eruptive events, consisting of both a large flare and a near simultaneous fast coronal mass ejection (CME), are the most powerful explosions in the solar system, releasing $10^{32}-10^{33}$ ergs in ${\sim}10^{3-4}\;s$. They are also the most powerful and energetic particle accelerators, producing ions up to tens of GeV and electrons up to hundreds of MeV. For flares, the accelerated particles often contain up to ~50% of the total energy released, a remarkable efficiency that indicates the particle acceleration is intimately related to the energy release process. Similar transient energy release/particle acceleration processes appear to occur elsewhere in the universe, in stellar flares, magnetars, etc. Escaping solar energetic particles (SEPs) appear to be accelerated by the shock wave driven by the fast CME at altitudes of ~1 40 $R_s$, with an efficiency of ~10%, about what is required for supernova shock waves to produce galactic cosmic rays. Thus, large solar eruptive events are our most accessible laboratory for understanding the fundamental physics of transient energy release and particle acceleration in cosmic magnetized plasmas. They also produce the most extreme space weather - the escaping SEPs are a major radiation hazard for spacecraft and humans in space, the intense flare photon emissions disrupt GPS and communications on the Earth, while the fast CME restructures the interplanetary medium with severe effects on the magnetospheres and atmospheres of the Earth and other planets. Here I review present observations of large solar eruptive events, and future space and ground-based measurements needed to understand the fundamental processes involved.

  • PDF

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

Test of magnetic turbulence anisotropy associated with magnetic dipolarizations

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Kyung-Chan;Kim, Hyun-Sook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field and compare them to determine possible anisotropic features. For this study, we identify a total of 47 dipolarization events from February 2008 using the magnetic field observations by the THEMIS A, D and E satellites when they are situated closely near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that for many events the spectral indices are larger for fluctuations in the ${\Psi}$ direction than for those in the other two directions, where the ${\Psi}$ direction is perpendicular to the background magnetic field line and to the azimuthal direction. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic. We discuss how this result differs from what is expected from the theory of homogeneous, anisotropic, MHD turbulence.

  • PDF

The Precision Validation of the Precise Baseline Determination for Satellite Formation

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2011
  • The needs for satellite formation flying are gradually increasing to perform the advanced space missions in remote sensing and observation of the space or Earth. Formation flying in low Earth orbit can perform the scientific missions that cannot be realized with a single spacecraft. One of the various techniques of satellite formation flying is the determination of the precise baselines between the satellites within the formation, which has to be in company with the precision validation. In this paper, the baseline of Gravity Recovery and Climate Experiment (GRACE) A and B was determined with the real global positioning system (GPS) measurements of GRACE satellites. And baseline precision was validated with the batch and sequential processing methods using K/Ka-band ranging system (KBR) biased range measurements. Because the proposed sequential method validate the baseline precision, removing the KBR bias with the epoch difference instead of its estimation, the validating data (KBR biased range) are independent of the data validated (GPS-baseline) and this method can be applied to the real-time precision validation. The result of sequential precision validation was 1.5~3.0 mm which is similar to the batch precision validation.