• Title/Summary/Keyword: earth and space

Search Result 1,808, Processing Time 0.029 seconds

Forecast of geomagnetic storm using coronal mass ejection and solar wind condition near Earth

  • Kim, Rok-Soon;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2013
  • To improve the forecast capability of geomagnetic storms, we consider the real time solar and near Earth conditions together, since the characteristics of CMEs can be modified during their transit from the Sun to the Earth, and the geomagnetic storms may be directly affected by not only solar events but also near Earth interplanetary conditions. Using 55 CME-Dst pairs associated with M- and X-class solar flares, which have clearly identifiable source regions during 1997 to 2003, we confirm that the peak values of negative magnetic field Bz and duskward electric field Ey prior to Dst minimum are strongly related with Dst index. We suggest the solar wind criteria (Bz<-5 nT or Ey>3 mV/m for t>2 hr) for moderate storm less than -50 nT by modifying the criteria for intense storms less than -100 nT proposed by Gonzalez and Tsurutani (GT, 1987). As the results, 90% (28/31) of the storms are correctly forecasted by our criteria. For 15 exceptional events that are incorrectly forecasted by only CME parameters, 12 cases (80%) can be properly forecasted by solar wind criteria. When we applying CME and solar wind conditions together, all geomagnetic storms (Dst<-50 nT) are correctly forecasted. Our results show that, the storm forecast capability of the 2~3 days advanced warning based on CME parameters can be improved by combining with the urgent warning based on the near Earth solar wind condition.

  • PDF

Simulation and Design of Optimized Three-Layer Radiation Shielding to Protect Electronic Boards of Satellite Revolving in Geostationary Earth Orbit (GEO) Orbit against Proton Beams

  • Ali Alizadeh;Gohar Rastegarzadeh
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • The safety of electronic components used in aerospace systems against cosmic rays is one of the most important requirements in their design and construction (especially satellites). In this work, by calculating the dose caused by proton beams in geostationary Earth orbit (GEO) orbit using the MCNPX Monte Carlo code and the MULLASSIS code, the effect of different structures in the protection of cosmic rays has been evaluated. A multi-layer radiation shield composed of aluminum, water and polyethylene was designed and its performance was compared with shielding made of aluminum alone. The results show that the absorbed dose by the simulated protective layers has increased by 35.3% and 44.1% for two-layer (aluminum, polyethylene) and three-layer (aluminum, water, polyethylene) protection respectively, and it is effective in the protection of electronic components. In addition to that, by replacing the multi-layer shield instead of the conventional aluminum shield, the mass reduction percentage will be 38.88 and 39.69, respectively, for the two-layer and three-layer shield compared to the aluminum shield.

STSAT-3 Operations Concept (과학기술위성 3호 운영개념)

  • Lee, Seung-Hun;Park, Jong-Oh;Rhee, Seung-Wu;Jung, Tae-Jin;Lee, Dae-Hee;Lee, Joon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2011
  • The Science and Technology Satellite-3 (STSAT-3) is based on the KITSAT-1, 2, 3 and STSAT-1, 2 which were Korea micro-satellites for the mission of space and earth science. The objectives of the STSAT-3 are to support earth and space sciences in parallel with the demonstration of spacecraft technology. The STSAT-3 carries an infrared (IR) camera for space & earth observation and an imaging spectrometer for earth observation. The IR payload instrument of the STSAT-3, Multi-purpose Infrared Imaging System (MIRIS), will observe the Galactic plane and North/South Ecliptic poles to research the origin of universe. The secondary payload instrument, Compact Imaging Spectrometer (COMIS), images the Earth's surface. The data acquired from COMIS are expected to be used for various application fields such as monitoring of disaster management, water quality studies, and farmland assessment. In this paper we present the operations concept of STSAT-3 which will be launched into a sun-synchronous orbit at a nominal altitude of 600km in late 2012.

An Orbit Robust Control Based on Linear Matrix Inequalities

  • Prieto, D.;Bona, B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.454-459
    • /
    • 2004
  • This paper considers the problem of satellite's orbit control and a solution based in Linear Matrix Inequalities (LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering of the Earth gravity field with high accuracy (less than 10${\mu}m$/${\mu}m$) and spatial resolution (better than 100km). In order to meet these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.

  • PDF

TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER (지구저궤도 GPS 수신기의 시험 및 성능 분석 방법)

  • Chung Dae-Won;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. Recently most of satellites use GPS receiver as navigation solution for finding satellite position. However, the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation. Post-processing concepts such as Precise Orbit Determination (POD) are recently applied to satellite data processing to improve satellite position accuracy. The POD uses raw measurement data instead of navigation solution of GPS receiver. The performance of raw measurement data depends on raw measurement data accuracy and tracking loop algorithm of GPS receiver. In this paper, a method for evaluating performance of raw measurement data is suggested. Test environment and procedure of the low earth orbit satellite acquiring for navigation solution of GPS receiver and navigation solution of POD are described. In addition, accuracy on navigation solution of GPS receiver, raw measurement data, and navigation solution of POD are analyzed. The proposed method can be applicable to general low earth orbit satellite.

Magnetic Turbulence Associated with Magnetic Dipolarizations in the Near-Tail of the Earth's Magnetosphere: Test of Anisotropy

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Kyung-Chan;Kim, Hyun-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, the anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically, we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field, and compare them in order to identify possible anisotropic features. For this study, we identify a total of 47 dipolarization events in February 2008 using the magnetic field data observed by the THEMIS A, D and E satellites when they are situated near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that the degree of anisotropy, as defined by the ratio of the spectral index of the perpendicular components to that of the parallel component, can range from ~0.2 to ~2.6, and there are more events associated with the ratio greater than unity (i.e., the perpendicular index being greater than the parallel index) than those which are anisotropic in the opposite sense. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic, to some non-negligible degree. We then discuss how this result differs from what the theory of homogeneous, anisotropic, magnetohydrodynamic turbulence would predict.

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration (우주 행성 광물 자원 탐사를 위한 지반 탐사 기술)

  • Ryu, Geun-U;Ryu, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.19-33
    • /
    • 2022
  • Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.