• 제목/요약/키워드: earth and space

검색결과 1,800건 처리시간 0.03초

지상지자기변화기록을 이용한 우주천기연구 (SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA)

  • 안병호
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

Kinetic Properties of Plasmas at Earth's Bow Shock

  • Lee, En-sang;Parks, George;Wilber, Mark;Lin, Naiguo
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.29.2-29.2
    • /
    • 2011
  • Earth's bow shock is a transition layer across which properties of plasmas change irreversibly. Although some features of the bow shock are well described by continuities of fluxes of various macroscopic quantities, particle dynamics across the transition layer is very complicated. Observed phase space distributions show multiple ion beams and partially thermalized ions around the transition layer. In some cases, both hot magnetosheath ions and cold solar wind ions simultaneously exist in the magnetosheath. Electrons around the transition layer usually have flat-top distributions with temperature anisotropy. From the observed properties of the phase space distributions we will discuss thermalization processes that occur across the shock transition.

  • PDF

쏘일네일링 공법을 적용한 영구 지하굴착 벽체의 설계사례 연구 (Design Case Study of Permanent Excavation Wall Using Soil Nailing System)

  • 박시삼;이제만;유찬호;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.84-91
    • /
    • 2005
  • In case of soil nailing system, there have been many attempts to expand into slope and temporary earth retaining system stabilization method since the first ground excavation earth retaining system construction in 1993. Recently, jointing wall, underground wall of buildings and excavation earth retaining wall, construction were increasingly applied for effective utilization of the limited underground space and land application maximized. However, the application of joining wall into retaining wall or building by temporary soil nailing system and design of permanent wall were performed by using Rankine earth pressure theory without considering the distribution of earth pressure in the soil nailing. In this study was performed to introduce the design case by 'Two-Body Translation mechanism (TBTM)' to be able to consider distribution of earth pressure in the soil nailing when designing the permanent jointing wall using soil nailing system for effective utilization of ground space. Also, this study attempts to evaluate the earth pressure change, decreasing effect of wall displacement and increasing effect of stability when advanced soil nailing system is constructed using $FLAC^{2D}$ ${\nu}er.$ 3.30 program and 'Two-Body Translation mechanism'.

  • PDF

새로운 무지보 흙막이 공법의 안정성 평가 (Stability Evaluation of Earth Retaining Structure using Tower Truss System)

  • 김영석;김주형;김영남;김성환;이성열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1324-1329
    • /
    • 2009
  • Needs for underground space development and utilization have been increasing in urban area. The conventional strutting method in excavation is effective to restrain the ground movements and displacements of earth structures but inefficient for workers because of small working space. The conventional earth reinforcement methods such as earth-anchor and soil-nailing also have limitation to apply in urban area due to threats to stability of adjacent buildings around excavation boundaries. Recently, many types of earth retaining structures are being developed to overcome disadvantages of conventional excavation methods in urban area. In this study, a series of numerical analyses were performed with MIDAS GTS, geotechnical analysis program and MIDAS Civil, structural analysis design program to evaluate behavior and stability of the new type of non-supporting earth retaining structure, called Temporary Tower System (TTS), consisting of tower truss structures with much economical and spatial advantage.

  • PDF

Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

  • Hwang, Junga;Kim, Hyang-Pyo;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.329-336
    • /
    • 2012
  • Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth's geomagnetic filed by space weather, we use the international quiet days' data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components' quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation's amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth's atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

  • Song, Young-Joo;Choi, Su-Jin;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.51-61
    • /
    • 2014
  • In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases' optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.

CME-CME Interaction near the Earth

  • Kim, Roksoon;Jang, Soojeong;Joshi, Bhuwan;Kwon, Ryunyoung;Lee, Jaeok
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.50.1-50.1
    • /
    • 2019
  • In coronagraph images, it is often observed that two successive CMEs merge into one another and form complex structures. This phenomenon, so called CME cannibalism caused by the differences in ejecting times and propagating velocities, can significantly degrade forecast capability of space weather, especially if it occur near the Earth. Regarding this, we attempt to analyze the cases that two CMEs are expecting to meet around 1 AU based on their arrival times. For this, we select 13 CME-CME pairs detected by ACE, Wind and/or STEREO-A/B. We find that 8 CME-CME pairs show a shock structure, which means they already met and became one structure. Meanwhile 5 pairs clearly show magnetic holes between two respective shock structures. Based on detailed investigation for each pair and statistical analysis for all events, we can get clues for following questions: 1) How does the solar wind structure change when they are merging? 2) Are there any systematic characteristics of merging process according to the CME properties? 3) Is the merging process associated with the occurrence of energetic storm particles? 4) What causes errors in calculating CME arrival times? Our results and discussions can be helpful to understand energetic phenomena not only close to the Sun but also near the Earth.

  • PDF

Rendezvous Mission to Apophis: II. Science Goals

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Jeong, Minsup;Ishiguro, Masateru;JeongAhn, Youngmin;Lee, Hee-Jae;Yang, Hongu;Baek, Seul-Min;Choi, Jin;Sim, Chae Kyung;Lee, Dukhang;Kim, Dong-Heun;Cho, Eunjin;Lee, Mingyeong;Bach, Yoonsoo;Jin, Sunho;Geem, Jooyeon;Jo, Hangbin;Choi, Sangho;Kim, Yaeji;Kim, Yoonyoung;Kwon, Yuna
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.57.3-57.3
    • /
    • 2021
  • 99942 Apophis is an Sq-type Potentially Hazardous Asteroid (PHA) with an estimated diameter of 370 m. It will approach the Earth down to 31,000 km from the surface during the encounter on April 13, 2029 UT, which is closer than geostationary satellites. This once-in-a-20,000 year opportunity would further expand our knowledge on the physical and dynamical processes which are expected to occur due to the gravitational tidal forces when an asteroid encounter with a planet. It will also provide an opportunity to promote great knowledge of the science of planetary defense. The science goal of the Apophis mission is to global-map the asteroid before and after the Earth's approach. In this talk, we will present scientific objectives, and briefly introduce instruments and operation scenarios of the mission.

  • PDF