• Title/Summary/Keyword: early yield

Search Result 1,518, Processing Time 0.031 seconds

A New Early Maturing Blackish Purple Pigmented Glutinous Rice Variety, 'Josaengheugchal' (조생 흑자색 찰벼 품종 '조생흑찰')

  • Song, You-Chun;Lee, Jeom-Sig;Ha, Woon-Goo;Hwang, Hung-Goo;Lim, Sang-Jong;Yeo, Un-Sang;Park, No-Bong;Kwak, Do-Yeon;Jang, Jae-Ki;Lee, Jong-Hee;Park, Dong-Soo;Jung, Kuk-Hyun;Jeong, Eung-Ki;Nam, Min-Hee;Kim, Young-Doo;Kim, Myeong-Ki;Kwon, Oh-Kyung;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.262-266
    • /
    • 2010
  • 'Josaengheugchal', a new blackish purple pigmented glutinous japonica rice cultivar, was developed by the rice breeding team of Department of Functional Crop, NICS, RDA in 2004. This cultivar was derived from a cross between 'Tohoku 149' as black glutinous source and 'Sx 864' as purple colored rice in 1992 and 1993 winter season, and selected by pedigree breeding method until $F_6$ generation. As a result, a promising line, YR15907-6-8-1-5, was advanced and designated as the name of 'Milyang 194' in 2001. The local adaptability test of 'Milyang 194' was carried out at seven locations from 2002 to 2004 and it was named as 'Josaengheugchal'. 'Josaengheugchal' is an early maturing cultivar and has 71 cm culm height. It has higher anthocyanian content compared with 'Heugnambyeo'. It is moderately resistant to leaf blast but susceptible to other disease and insect pests. The yield potential of 'Josaengheugchal' in brown rice was about 4.21 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to the plain paddy field of middle, Honam, and Yeomgnam in Korea under ordinary and double cropping system.

A New Early Maturing Rice Cultivar with High Quality and Good Taste, 'Geumyeong' (중산간지 적응 조숙 고식미 벼 신품종 '금영(金穎)')

  • Choung, Jin-Il;Park, Hyun-Su;Kang, Jong-Rae;Nam, Min-Hee;Kwak, Do-Yeon;Kim, Jeong-Il;Song, You-Chun;Yeo, Un-Sang;Shin, Mun-Sik;Lee, Jong-Hee;Kim, Dae-Sik;Park, No-Bong;Park, Dong-Soo;Yi, Gi-Hwan;Cho, Jun-Hyeon;Kim, Chun-Song;Kang, Hang-Won;Ko, Jae-Kwon;Ahn, Jin-Gon;Kim, Jung-Gon;Hwang, Heung-Gu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.272-275
    • /
    • 2010
  • 'Geumyoung' is a new early maturing rice cultivar developed from the cross between Sambaegbyeo and Iksan423/Sangju22 at Sangju Substation, NICS, RDA, Korea in 2009. It needs about 116 days from seedling to harvest in mid-mountainous areas. This cultivar has about 72 cm long culm and 19 cm long panicle, which are similar to Odaebyeo. It has higher panicle number per plant, medium to small grains and sometimes has a few awned spikelets. It shows tolerance to cold and resistance to blast but is susceptible to bacterial blight, virus diseases, and insects and pests. Milled rice of 'Geumyoeng' is translucent with non-glutinous endosperm and medium short grain. It has about 18.0% amylose and 6.6% protein content with good palatability of cooked rice. The milled rice yield of this cultivar was 5.53 MT/ha under standard fertilizer level of ordinary transplanting cultivation. 'Geumyong' would be adaptable for ordinary transplanting cultivation in the northern plains, and northern and southern mid-mountainous areas of South Korea.

Cone Characteristics and Seed Quality among Harvest Times in the Clonal Seed Orchard of Larix kaempferi (낙엽송 클론 채종원에서 구과 채취시기에 따른 구과특성 및 종자품질)

  • Ye-Ji Kim;Da-Eun Gu;Gyehong Cho;Heeyoon Choi;Yeongkon Woo;Chae-Bin Lee;Sungryul Ryu;Hye-Joon Joo;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.352-362
    • /
    • 2023
  • Harvest time is one of the most important determining factors of seed quality, especially for species that produce seeds over irregular and long-term periods, such as Larix kaempferi. A cone collection plan must be established to increase seed production efficiency and stable mass production. We investigated seed qualities such as seed efficiency, germination rate, and T50 (germination speed), with 7 or 8 cone collection times at a clonal seed orchard of L. kaempferi in Chungju between 2021 and 2022. A multivariate analysis was then performed for the collected data. In early August, decreases in the moisture contents and browning of cones were observed. These were followed by a decrease in germination rate, with a peak at the end of September, but no clear trend was observed. The later the cones were harvested, the better the seed vigor (T50). However, the seed yield and efficiency decreased owing to increases in seed scattering and the number of insect-damaged seeds. As a result, the optimal time of seed harvest for the seed orchard was in early August. To produce uniform seedlings, insect damage must be reduced through timely control and harvest cones in early September. This shows that the degree of browning and moisture content of cones can be used as indicators of the timing of cone collection in L. kaempferi seed orchards.

The Effects of Different Particle Sizes of Fused Phosphate on Paddy Rice (수도(水滔)에 대한 용성인비(熔成燐肥)의 입도별(粒度別) 비효에 관한 연구(硏究))

  • Uhm, Dae-Ick;So, Jae-Don;Chang, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.245-256
    • /
    • 1978
  • The effects of different particle size distribution of fused phosphate on the changes of phosphorus content in soil and plant, growth and yield of paddy rice were investigated through pot and field experiments. The following results were obtained. 1. Negative correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was larger than 28 mesh, and 65 to 150 mesh, and highly significant correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was 28 to 48 mesh. But no significant correlation was found betweeen unhulled rice yield and the composition of fused phosphate whose particle size was 48 to 65 mesh. Thus the composition of 56% of 28 to 48 mesh particles and 44% of 48 to 65 mesh particles would give the best effect. 2. In the soil of the Jeonbug series rice plant in the plots treated with fine single textured fused phosphate showed poor early growth, i.e. poor tillering and short plant height. But at harvesting stage it showed rather increased number of tillers and higher plant height. Of the composite fused phosphate the more particles of 28 to 48 mesh it had, the better growth it showed. In the soil of the Yesan series rice plant in the treated plots showed much better tillering and higher plant height in contrast with that in the control plots. Of the single textured fused phosphate the finer particles showed better growth, while of the composite fused phosphate the more particles finer than 48 mesh it had, the poorer the tillering. 3. The content of available phosphorus in the soil tended to increase as the particles of both single textured and composite phosphate became finer. The soil phosphorus content decreased as the content of phosphorus absorbed by rice plant increased at each stage of growth, and the amount of soil phophorus decreased became larger as the the particles were finer. The amount of available phosphorus in the treated soils was larger in the soil of the Yesan series than in the soil of the Jeonbug series which was a long cultivated soil and contained relatively high phosphorus. 4. In the single textured fused phosphate the amount of phosphorus absorbed by rice plant tended to increase as the particles were finer, and great difference was found at heading stage, but at harvesting stage little difference was found for all the plots. In the field experiment in the soil of the Jeonbug series more phosphorus was absorbed by rice plant in the plots treated with the composite fused phosphate of higher content of 28 to 48 mesh particles. In the pot experiment the amount of phosphorus absorbed by rice plant was highest in the plots treated with the composite fused phosphate of 53.35% of particles larger than 48 mesh and 46.6% of particles smaller than 48 mesh. In the pot experiment in the Yesan series the amount of absorbed phophorus was highest in the plots treated with the fused phosphate of 47.75% of particles larger than 48 mesh and 50. 216% of particles smaller than 48 mesh. 5. A reverse relationship was found between the absorbed phosphorus and silica. In the pot experiment in the soils of both the Jeonbug and Yesan series the amount of phosphorus absorbed by rice plant increased as the particles were finer, while the amount of absorbed silica tended to decrease.

  • PDF

Studies on the Breeding of the Response to short photoperiod, Fiber weight, and Qualitative characters and of the Associations Among these characters in Kenaf (섬유용양마의 육종에 관한 연구 -단일반응성과 섬유종의 유전 및 연소)

  • Johng-Moon Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.115-124
    • /
    • 1968
  • It was shown that the most desirable characters for kenaf are high-fiber weight and moderately early maturity. Therefore, the objectives of this research on this crop is to find varieties possessing these characteristics. The experiments covered in this report provided new information relative to segregation, mode of inheritance, estimate of the number of genes involved in fiber weight and their response to short day length of 10 hours and the qualitative characters, such as, color of stem, capsule, petiole and shape of leaves. The associations which exist among these characters are also indicated. Fiber weight per plant, days to flowering, Stem color, Petiole color, Capsule color, and shape of leaves were studied in parental, $F_1$.$F_2$and backcross populations of a cross between Dashkent, a low-fiber weight but early maturing kenaf variety, and G 38 F-1, a high-fiber weight but late maturing kenaf variety. Crosses were made using the varieties, Dashkent and G 38 F-1 as parents. The Dashkent parent had the following characteristics: green stems, capsules and petioles and lobed shaped leaves; 105.8234 mean-days to flowering in the field, and 106.9222 mean-days under 10 hours short day treatment. The other parent, G 38 F-1 had red stems yellow capsules and red petioles and unlobed shaped leaves; 149.8921 mean-days to flowering in the field, and 62.3684 mean-days under 10 hours short day treatment. Both of the parents, $F_1$, $F_2$, $BC_1$ ($F_1$ X Dashkent, ) and $BC_2$($F_1$ ${\times}$ G38F-1) of the kenaf cross were grown at the Crops Experiment Station, Suwon, Korea in 1965. Color of stems, petioles and capsules, and shape of leaves were noted to be simply inherited as a single factor. Red stem color was dominant over green stem color, red petiole color was dominant over green petiole, lobed shaped leaves were dominant over unlobed shaped leaves and yellow capsules were dominant over green capsule. It was, also, noted that the factor for color of petiole was linked with the factor for shape of leaf with a 11.9587 percent recombination value, however no interaction or linkage were found among the color of stem and capsule color. Using Powers partitioning method, theoretical means and frequency distributions for each population, the days to flowering were calculated with the assumption that two gene pairs were involved. The values obtained fitted the theoretical values. In general this would indicate that Dashkent and G 38 F -1 were differentiated by two gene pairs. Heritability values were calculated as the percent of additive genetic variance. Heritability value of days to flowering, 89.5% in the broad sense and 79.91% in the narrow sense, indicated that the selection for this character would be effective in relatively early generations. Particularly, high positive correlations were found between days to flowering and the color of petioles and shape of leaves. However, there was no relation between days to flowering and capsule color nor between these and stem color. On the basis of the results of this experiment there is evidence that the hereditary factor for shape of leaves and the color of petioles is linked with an effective factor or factors for the characters of days to flowering. The association was sufficiently close to offer a possible simple and efficient means of selection for moderately early mat. uring plants by leaf shape and petiole color selection. Again using Powers partitioning method the frequency distribution for each population to the fiber weight were calculated with the assumption that two gene pairs, AaBb, were involved. Both phenotypic and genotypic dominance were complete. The obtained value did not agree with the theoretical value for $F_2$ and $BC_1$ ($F_1$ ${\times}$ Dashkent.) It seems that Dashkent and G 38 F-1 were differentiated by two major gene pairs but some the other minor genes are necessary. It is certain that the hereditary factor for shape of leaves and color of petioles is linked with an effective factor or factors for fiber weight. Also, high. yielding plants with moderately early maturity were found in the $F_2$ population. Thus, simultaneous selection for high-fiber yield and moderately early maturing plants should be possible in these populations. Phenotypic and genotypic correlation coefficients between fiber weight per plant and days to flowering, stem height and stem diameter were calculated. In general, genotypic correlations are higher than the phenotypic correlation. The highest correlation is found between stem height and fiber weight per plant (0.7852 in genotypic and 0.4103 in phenotypic) and between days to flowering and fiber weight per plant (0.7398 in genotypic and 0.3983 in phenotypic.) It was also expected that the selection of high stem height and moderately early maturing plants were given the efficient means of selection for high fiber weight.

  • PDF

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

Studies on the Inheritance of Heading Date in Wheat(Triticum aestivum L. em Thell) (소맥(Triticum aestivum L. em Thell)의 출수기 유전에 관한 연구)

  • Chang-Hwan Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.15
    • /
    • pp.1-31
    • /
    • 1974
  • Introducing genes for earliness of wheat varieties is important to develop early varieties in winter wheat. In oder to obtain basic informations on the response of heading to the different day length and temperature treatments and on the inheritance of heading dates, experiments were conducted at the field and greenhouse of the Crop Experiment Station, Suwon. Varieties used in this experiments were, early variety Yecora F70, medium varieties Suke #169, Parker and Yukseung #3, and late varieties Changkwang, Bezostaia, Sturdy and Blueboy. The parents and F$_1$s of partial diallel crosses of above eight varieties were subjected the following four different treatments; 1. high temperature and long day, 2. high temperature and short day, 3. low temperature and long day, and 4. low temperature and short day. The same materials were grown also in field condition. Parents, F$_1$ and F$_2$ generation were grown also in both greenhouse under high temperature and short day and in field. The results obtained were summarized as follow: 1. No effects of temperature and daylength on the number of leaves on the main stem were found when -varieties were vernalized. The number of main stem leaves were fewer for spring type of varieties than for winter type of varieties. 2. The effects of temperature and daylength on the days to flag leaf opening were dependent on the speed of leaf emergence. The speed of leaf emergence were faster for lower leaves than for upper leaves. 3. The response to short day and long day (earliness of narrow sense) of varieties were found to be direct factor responsible to physiology of heading dates in vernalized varieties. Great difference of varieties to heading date was found in high temperature and short day treatment, but less differences were found in high temperature and long day, low temperature and long day and low temperature and short day treatments respectively. The least varietal difference for heading dates was found in the field condition. 4. Changkwang and Parker were found to be the most sensitive to short day treatment (photosensitive) and the heading of these varieties were delayed by short day treatment. No great varietal differences were found among other varieties. 5. Varietal differences of heading dates due to daylength were greater in high temperature than in low temperature. 6. Varietal differences of heading dates due to temperature were not great. but in general the heading dates of varieties were faster under high temperature than under low temperature. 7. Earliness of heading dates was due to partial dominance effect of genes involved in any condition. The degree of dominance was greater under short day than under long day treatment. 8. The varietal differences of heading date under high temperature and long day were due to earliness or narrow sense (response to long day) of varieties. The degree of dominance was greater for Yecora F70, spring type than for other winter type of varieties. No differences or less differences of degree of dominance was found among winter type of varieties. The estimated number of effective factor concerned in the earliness of narrow sense was one pair of allele with minor genes. 9. The insensitivity of varieties to short day treatment in heading dates was due to single dominant gene effect. Under the low temperature the sensitivity of varieties to short day treatment was less apparent. 10. The earliness of short day and long day (earliness of narrow sense) sensitivities of varieties appearea to be due to partial dominance of earliness over lateness. In strict sense, the degree of the dominance should be distinguished. 11. Dominant gene effects were found for the thermo-sensitivity of varieties, and the effect was less, significant than the earliness in narrow sense. 12. One pair of allele, ee and EE, for photosensitivity was responsible for the difference in the heading dates between Changkwang and Suke #169. Two pairs of alleles, ee, enen and EE, EnEn. appeared to be responsible for the difference between Changkwang and Yecora F70. The effects of EE and EnEn were, additive to the earliness and the effects of EE were greater than EnEn under short day. However, the effects of EE were not evident in long day but the effects of EnEn were observed in long day. 13. Two pairs of dominant alleles for the earliness were estimated from the analysis of F$_1$ diallels in the field but the effects of these alleles in F$_2$ were not apparent due to low temperature and short day treatment in early part of growth and high temperature and long day treatment in later part of growth. The F$_2$ population shows continuous variation due to environmental effects and due to other minor gene effects. 14. The heritabilities for heading dates were ranged from 0.51 to 0.72, indicating that the selection in early generation might be effective. The extent of heritability for heading dates varied with environments; higher magnitude of heritability was obtained in short day treatment and high temperature compared with long day and low temperature treatments. The heritabilities of heading date due to response to short day were 0.86 in high temperature and 0.76 in low temperature. The heritabilities of heading date due to temperature were not significantly high. 15. The correlation coefficients of heading dates to the number of grains per spike, weight of 1, 000 grains. and grain yield were positive and high, indicating the difficulties of selections of high yielding lines from early population. But no significant correlation coefficient was obtained between the earliness and the number of spikes, indicating the effective selection for high tillering from early varieties for high yielding.

  • PDF

Weeding Effect and Phytotoxicity Variable in Herbicide Treatment in Mechanically Transplanted Paddy Field - 1. Effect of Application Time on Weeding Effect and Phytotoxicity (기계이앙답에(機械移秧畓) 있어서 제초제(除草劑)의 약효(藥效) 및 약해(藥害) 변동요인(變動要因) - 제(第) 1 보(報) 처리시기(處理時期)의 차이(差異)가 약효(藥效) 및 약해(藥害)에 미치는 영향(影響))

  • Ryang, Hwan-Seung;Han, Seong-Soo;Kim, J.S.
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.69-77
    • /
    • 1981
  • Six herbicides were evaluated to investigate the phytotoxicity of rice plant and the weeding efficacy influenced by the time of application in mechically transplanted paddy field. The amount of each chemical applied was 3 kg, a. i, /ha. Chlormethoxynil : Rotala indica KOEHNE and Lindernia pyxuiaria PHILCOX were effectively controlled when applied on the 12th day after transplanting (12 DAT) and this herbicide was excellent for the control of Echinochloa crusgalli P. BEAUV, Monochoria vaginalis PRESL and Sagittaria pygmaea MIQ, when applied early (7 days after puddling) but its weeding effect for these weeds decreased greatly as the application time became later. It had a controlling effect for Potamogeton distinctus A. BENN, Cyperus serotinus ROTTB and Scirpus hotarui ROXB at the initial period at the earlier application time. Butachlor was effective in controlling E. crusgalli, R. indica and L. pyxidaria at 12 days after transplanting (DAT) but was not effective in controlling P. distinctus and S. pygmaea even at the early application time. M. vaginalis, C. serotinus and S. hotarui were effectively controlled by the butachlor treatment at 7 days after final puddling (2 DBT-SDAT) but this weeding effect decreased at the late application time. A combination of butachlor and naproanilide excellently controlled E. crusgalli, R. indica, L. pyxidaria and S. pygmaea regardless of the application time. For the control of M. vaginalis, C. serotinus and P. distinctus, the weeding effect of this mixtures was much greater than that of the single treatment of butachlor. Perfluidone was excellent for the control of E. crusgalli, R. indica, L. pyxidaria, M. vaginalis and S. pygmaea at either application time tested. P. distinctus, C. serorinus and S. hotarui could be controlled by this chemicals until the time of first observation (23 DAT) but the effect for these weeds somewhat decreased as time passed. The effect of pyrazolate on E. crusgalli, M. vaginalis, S. hotarui and P. distinctus was very excellent regardless of the application time but R. indica and L. pyxidaria could not be completely eliminated by this chemical. This chemical was effective in controlling C. serotinus when applied at 7-9 days after final puddling and showed a controlling effect for S. hotaruionly at the initial period. Piperophos + dimethametryn was very excellent for the control of all the annual weeds and P. distinctus. It showed a controlling effect on S. pygmaea, C. serotinus and S. hotarui only at the initial period. There was no difference in the effects on phytotoxicity and yield between chlormethoxynil and pyrazolate at either times of application tested. The later the application time was, the less the phytotoxicity of butachlor and piperophos+dimethametryne was. The phytotoxicity of butachlor + naproanilide and perfluidone decrease in the plots treated at the later application time. When the last two chemicals were treated at 2 days before transplanting (DBT) the yield decreased as compared with the hand weeded plot.

  • PDF

Double Cropping Productivity of Main Whole-Crop Silage Rice and Winter Feed Crops in the Central Plains of Korea (중부 평야지에서 사료용 벼와 주요 동계사료작물 이모작 시 생산성)

  • Ahn, Eok-Keun;Jeong, Eung-Gi;Park, Hyang-Mi;Jung, Kuk-Hyun;Hyun, Ung-Jo;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.311-322
    • /
    • 2019
  • In order to establish an optimal double cropping system to obtain the maximum annual quantity, we investigated the annual productivity of whole-crop silage (WCS) rice, Jowoo (Jw), Yeongwoo (Yw), and Mogwoo (Mw), and winter feed crops (WFC), Italian ryegrass (IRG), Greenfarm (GF), rye Gogu (GU), and triticale Joseong (JS), in paddy fields of the central plains of Korea. From 2016 to 2019, each crop was subjected to two standard cultivation methods: WCS rice and WFC optimal. Using the WCS optimal mode, the average dry matter yield (DMY) of WCS rice, early flowering Jw, was 15.8 tons/ha and 21.0 for the mid-late heading Yw; there was no significant difference compared to the 19.2 tons/ha late-flowering Mw (p<0.01). The WFC were not significantly different between GF (3.2 tons/ha) and GU (4.5) sown on September 23rd, while JS was the highest at 12.6 tons/ha (p<0.001). There was a significant difference in the order of JS (16.6 tons/ha) > GF (10.5) > GU (4.7)(p<0.001) sown on October 11th. For JS sown on October 31st, the DMY was 11.8 tons/ha, which was significantly higher than that of the other two crops (p<0.05). Except for rye GU, DMY was the highest when sown on October 11th. For WFC optimal mode, the average DMY of JS was the highest at 18.3 tons/ha, which was significantly different from that of GF (10.9) and GU (9.6) (p<0.001). The DMY of WCS rice transplanted on May 10th was the highest at 23.0 tons/ha in Mw, which was not significantly different from that of Yw (21.4) but significantly different from that of Jw (15.9) (p<0.05). On transplanting on May 25th, the DMY of Mw was the highest at 24.2 tons/ha; this was not significantly different from that of Yw (20.7), but it was significantly different from that of Jw (18.6) (p<0.05). When transplanted on June 11th, the DMY was 21.3 tons/ha in Yw, which was significantly higher than the DMY of other two cultivars, Jw and Mw (p<0.05). For the WCS rice-WFC double cropping, the total annual DMY was 33.6 tons/ha with the combination of the WCS rice, Yw, and the triticale JS for WCS optimal mode. Meanwhile, the total annual DMY was 39.6 tons/ha with the combination of the triticale JS and the WCS rice, Yw, for WFC optimal mode. In conclusion, the strategies for obtaining the maximum yield of high-quality forage for WCS rice-WFC, WFC-WCS rice double cropping are as follows: 1) cultivation centered on the optimal mode of WFC, and 2) sowing the WFC, triticale JS in mid-October, harvesting the crops around the end of May and transplanting the WCS rice, Yw, in early June to obtain the maximum DMY of 39.6 tons/ha.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF