• Title/Summary/Keyword: early rice seedling

Search Result 115, Processing Time 0.022 seconds

Effect of Early Seeding on Seedling Establishment and Yield in Direct Dry Seeding Rice at Honam Plain Area of Korea

  • Kim, Sang-Su;Back, Nam-Hyun;Chot, Min-Gyu;Choi, Weon-Young;Park, Hong-Kyu;Kim, Bo-Kyeong;Shin, Hyun-Tak;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.236-242
    • /
    • 1999
  • To examine the seedling stand and growth as affected by early seeding dates of dry direct seeded rice in the Honam plain area of Korea, Dongjinbyeo was seeded at six seeding dates from early March to late April in rice fields of silty loam soil(Jeonbuk series) at the National Honam Agricultural Experiment Station (NHAES) for two years, 1996 and 1998. Seedling stand decreased slightly. with an early seeding date, but it produced more than the optimum seedling number except for the seeding of 25 March in 1996. Days to emergence was significantly longer, as seeding date was earlier, and days to emergence by early seeding was shortened only by 8 days because the mean air temperature was lower in 1996 than average, while in 1998, the reduction effect was nine to twenty five days because the mean air temperature was higher than average. In early seeding, various weeds occurred at the emergence date of rice and dominant weeds were Alopecurus aequailis, Ludwigia prostata and Rorippa islandica. NH$_4$$^{+}$ -N content in the soil at the 5th leaf stage and maximum tillering stage were lower, as the seeding date was earlier when nitrogen was split applied as basal and top dressed in 1996, while it was not significantly different among seeding dates when nitrogen was intensively applied as a top dressing in 1998. Tiller number at the maximum tillering stage and panicle number/m$^2$ were more, as seeding date was earlier in 1996, while it was not different in 1998. Filled grain rate and 1,000 grain weight was not different among the seeding dates. Milled rice yield was significantly decreased in the seeding before the middle of March, but in the seeding after late March, it was not varied when compared with the normal seeding date in 1996, while in 1998, there was no difference among seeding dates. From the above results, in consideration of seedling stand, weed occurance, rice growth and milled rice yield, the critical optimum early seeding time in the southern plain area may lie in early April. But it was suggested that when soil moisture is proper for seeding practices, seeding amount is increased and nitrogen is applied after plumule emergence of rice, milled rice yield may not be reduced in the seeding of middle or late March, compared with the seeding in April.l.

  • PDF

Seedling Stand Influenced by Water Management after Seeding and Seed Soaking with Plant Growth Regulators in Direct Wet Seeding Rice

  • Back, Nam-Hyun;Kim, Sang-Su;Kang, Si-Yong;Choi, Min-Gyu;Shin, Hyun-Tak;Kwon, Tae-Oh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.225-229
    • /
    • 1999
  • Unstable seedling stand establishment of wet direct seeding culture of rice is one of the major elements preventing the extension of its culture area. In order to develop methods of seedling stand improvement in direct seeded rice on flooded surfaces, three field experiments were conducted on silty loam soil using a cultivar 'Donjinbyeo' for three years, mainly focusing on water management after seeding and seed soaking with plant growth regulators (PGRs). Under the condition of shallow flooding after seeding, seedling stand rate increased and floating seedling rate decreased in both early and normal season seeding compared to deep flooding. With earlier draining time after seeding, there was a tendency towards preferential growth of the seminal root, increase of seedling stand and decrease of the floating seedling rate. Therefore the highest seedling numbers per unit area and the lowest floating seedling numbers were found upon drainage at 1 day after seeding (DAS), while a contrary tendency was shown upon conventional drainage at 7 DAS. Seed soaking with PGRs such as Metalaxyl or mixing of Metalaxyl with gibberellic acid (GA$_3$) significantly increased the seedling stand. In addition the effects of PGR treatment on seedling stand and the early growth of plants were greater under flooded conditions than under drained conditions after seeding, although draining of water after seeding improved the seedling establishment rate more when compared with the PGR treatment. These results suggest that draining management after seeding or maintaining of shallow flooding for a week is the most effective method to improve the seedling stand rate in wet direct seeding.

  • PDF

Germination and Seedling Growth Affected by Seed Specific Gravity

  • Yun, Myoung-Hui;Shin, Jin-Chul;Yang, Woon-Ho;Son, Ji-Young;Kim, Jun-Hwan;Park, Geun-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.434-439
    • /
    • 2008
  • The amount of salt to make seed sorting solution of the specific gravity of 1.13 was reconsidered and determined as 3.8 kg salt in 18 L water, which is lower amount than currently used. Five rice cultivars were examined. Percent germination and seedling emergence were not similar. Seedling emergence rate of Japonica varieties, Nampyungbyeo and Daerypbyeo-1 were 87% and 95% under specific gravity of 1.13, respectively. Seedling emergence rate of Tongil type variety, Dasanbyeo was as high as 67% in specific gravity of 1.06. Seedling emergence rate of waxy rice, Hwasunchalbyeo and Aranghangchalbyeo were examined. Seedling emergence rate was 94% in both cultivars in specific gravity of 1.04. Seedling emergence rate was same in specific gravity of 1.08 which is generally used for selecting seed currently. Early growth (plant height, leaf number, and dry weight) were not significantly different by specific gravity within species. In all cultivars except waxy rice, highest seedling emergence rate was observed in specific gravity of 1.13 which is currently used for selection and decreased as specific gravity is lowed. However, considering total amount of seeds in each group of specific gravity, amount of seed in lower specific gravity group is relatively small and total seedling emergence rate within variety dose not show big difference. However, if seeds with low speicific gravity are produced due to the bad grain filling condition and consequently total seed content of low specific gravity increases, results will be differnt. Reduction in total growth and yield could occur. It will be important to comply with the seed sorting criterion of 1.13 for Japonica, 1.06 for Tongil, and 1.04 for waxy rice variety to ensure the maximum rice growth and yield.

Effect of Seed Coating with Polymers on Seed Vigour and Seedling Stand in Direct Seeded Rice

  • Song, Dong-Seog;Lee, Sheong-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.214-222
    • /
    • 1998
  • These experiments were conducted to investigate water uptake, electrical conductivity, germination percentage, seedling growth, and seedling establishment rate in direct seeding cultivation of rice. The rice seeds of six japonica type varieties were coated with 12 kinds of polymers in a standard concentration of 0.2% using seed coating machine. The water absorption of the polymer-coated seeds under saturation conditions was not different among varieties, and was the highest in kulcel, maltrin, and waterlock on the polymer-coated seeds. The electrical conductivity with waterlock (55.0 $\mu scm^{-1}g^{-1}$) was higher than the control plot (45.6 $\mu scm^{-1}g^{-1}$) and other treatments. The germination of the polymer-coated seeds was 95.9% at control plot, 92.7% at low temperature and 35.7% at high temperature. The total dry weight of seed decreased in the order of low temperature, control plot, and high temperature, and was effective in pvp (polyvinyl pyrrolidone), opadry, and sacrust. The seedling establishment rate in direct seeding cultivation ranged from 74.9 to 81.0% in flooded paddy surface, and ranged from 64.7 to 76.6% in dry paddy. In both cases, it decreased in the order of early, medium and medium-late varieties, but was enhanced in daran 8600, sepirect, and sacrust. According to this study the recommended polymers for direct seeding cultivation of rice are daran 8600, sepirect, and sacrust.

  • PDF

Identification of quantitative trait loci for root development during seedling stage in rice

  • Han, Jae-Hyuk;Chin, Joong Hyoun;Yoo, Soo-Cheul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.103-103
    • /
    • 2017
  • Vigorous root growth at the seedling stage in dry direct-seeded conditions is considered as a critical trait because it is involved in seedling emergence, early vegetative vigour, nutrient uptake as well as drought tolerance. In this study, we performed QTL mapping using the recombinant inbred lines obtained from the cross between Tongil-type Dasan and temperate japonica TR22183 (DT-RILs) to identify QTL underlying early root development. TR22183, which was previously reported to have high nitrogen utility and cold tolerance, showed vigorous root growth at the seedling stage in semi-drought conditions. Root length, fresh weight and dry weight of TR22183 were significantly higher than in Dasan. By QTL analysis with genotyping-by-sequencing method, we identified two QTLs for root fresh weight (RFW) in chromosome 7 and root dry weight (RDW) in chromosome 8, explaining phenotypic variances of 13.5% and 10.6%, respectively. These QTLs would be used to develop rice varieties adapted to direct-seeded cultivating system.

  • PDF

Changes in quantity and quality of rice at different sowing date under wet-hill seeding in Jeonbuk plain area

  • Cho, Seung-Hyun;Lee, Deok-Ryeol;Lee, Songyee;Kim, Kab-Cheol;So, Sun-young;Lee, Ki-Kwon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.261-261
    • /
    • 2017
  • This study was carried out to provide basic data for spreading rice direct seeding by inducing stabilization of seedlings, yield and quality according to sowing times in rice direct seeding cultivation. In 2016, 'Sukwang' was seeded 3 times by 10 days interval on May. 10, 20, 30 and 6kg/10ha of seeding rate respectively in Iksan. In summary, the number of rice seedling establishment was higher than the optimum seedling establishment level at all sowing periods and the seeding rate was better as the sowing period was delayed. Weed development by sowing was the highest at early sowing, May 10, and decreased at late sowing. Heading dates were delayed by 3days for sowing on May 10, 7days for sowing on May 20, and 11 days on sowing on May 30. Rice yield increased with the delay sowing time and compared to the transplanting. It was 84% in sowing on May 10, 94% in sowing on May 20, and 99% in sowing on May 30. In addition, head rice ratio and head rice yield increased according to delayed of seedling.

  • PDF

Effects of Different Root Restriction Media on Root Activity and Seedling Quality and Early Growth Parameters of Runner Plantlets of Strawberry After Transplanting

  • Park, Gab Soon
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2016
  • The present study aimed to determine the influence of various root restriction media on seedling quality and early growth of strawberry after transplanting. The root activity of the seedlings, measured 20 days after fixation, was considerably higher (0.096, 0.090, and $0.063mg{\cdot}g^{-1}{\cdot}h^{-1}$ at 420, 450, and 480 nm, respectively) in expanded rice hull (ERH) treatment than in the sandy loam and loamy sand treatments. The volumetric water content (VWC) of the root media tested across 3 irrigation regimes (15 d, 30 d, 45 d) in the nursery field was highest in sandy loam (65.0-66.8%), followed by 59.4-61.3% in loamy sand and 38.6-45.3% in ERH. When growth parameters of runner plantlets were compared, ERH treatment was found to result in the highest crown thickness and fresh weights of root and above-ground parts. This had a favorable influence on above-ground tissue growth after transplanting to plastic house soil. As mentioned above, ERH treatment resulted in the highest seedling quality and early growth after transplanting. The results of this study would serve as useful on-site data for the production of high-quality strawberry seedlings.

Direct Seeding Cultivation on Submerged Paddy in Rice I. Seedling Emergence and Early Growth under Different Temperature and Seeding Depth (벼 침수토중 직파 재배 연구 I. 온도 및 파종 심도에 따른 출아 및 초기 생육)

  • Park, Seok-Hong;Lee, Chul-Won;Yang, Won-Ha;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.204-213
    • /
    • 1986
  • The objective of this paper was to examine the response of rice seedling emergence and early growth under the different temperature (day/night, 29/21$^{\circ}C$, 17/17$^{\circ}C$, 12/12$^{\circ}C$) and the different seeding depth (1 cm, 2 cm, 3 cm). The trial was carried out in the phytotron and field in the Crop Experiment Station, Suwon, Korea in 1985. Calcium peroxide-coated seeds were very effctive in promoting seedling emergence, seedling establishment and eary growth of rice. Coated seeds were more effective in low temperature condition (17/17$^{\circ}C$, 12/12$^{\circ}C$) than in high temperature (29/21$^{\circ}C$) at the phytotron trial. The deeper the seeding depth, the less the emergence and seedling establishment, and the available seeding depth was I cm in the direct seeding under the flooded soil. In the field trial (seeding date, May 1) the results for the emergence and seedling establishment were similar to those in the phytotron trial. Available cultivars for the direct seeding cultivation under the flooded soil were Cheonmabyeo, Namyangbyeo, Kihobyeo, Akibare, Nakdongbyeo and Dongjinbyeo in Japonica type, and Taebaegbyeo, Samgangbyeo and Gayabyeo in Indica x Jponica type. Coefficients of variation to the emergence and seedling establishment between rice cultivars were very high. Therefore, in the direct seeding cultivation under the submerged paddy, choice of rice cultivars and improved technique for direct seeding will be more necessary.

  • PDF

The Effects of Transplanting Time and Meteorological Change to Variation of Phyllochron of Rice

  • Ku, Bon-Il;Choi, Min-Kyu;Kang, Shin-Ku;Lee, Kyung-Bo;Park, Hong-Kyu;Park, Tae-Seon;Ko, Jae-Kwon;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • This study was performed at Rice and Winter Cereal Crops Department of NICS during 2007 and 2008 to investigate the characteristics of rice leaf emergence and to obtain basic data which can be used for rice growth simulation model by which we can forecast rice growth stage and heading date accurately under different cultivars, transplanting date, and climatic conditions. To confirm leaf emergence rate according to rice maturing ecotype, we surveyed the leaf emergence rate and heading date of Unkwangbyeo, Hwayoungbyeo and Nampyeongbyeo which are early maturing, medium maturing and medium-late maturing cultivars, respectively, according to seedling raising duration and transplanting time. When seedling duration was 15 days, the growth duration between transplanting time and completion of flag leaf emergence on main culm were 51.5~78.3 days in Unkwangbyeo, 55.3~87.9 days in Hwayoungbyeo and 58.4~98.4 days in Nampyeongbyeo, respectively. When seedling duration was 30 days, they were 50.1~75.5 days in Unkwangbyeo, 52.4~84.7 days in Hwayoungbyeo and 56.4~93.8 days in Nampyeongbyeo, respectively. As transplanting time delayed, the emerged leaf number after transplanting decreased in all rice cultivars. The cumulative temperature between transplanting time to completion of flag leaf elongation on main culm were $1,281^{\circ}C{\sim}1,650^{\circ}C$ in Unkwangbyeo, $1,344^{\circ}C{\sim}1,891^{\circ}C$ in Hwayoungbyeo and $1,454^{\circ}C{\sim}2,173^{\circ}C$ in Nampyeongbyeo, respectively. Leaf emergence rate on main culm were precisely represented by equation, y = $y_0$ + a / [1 + exp( - (x - $x_0$) / b)]^c, when we used daily mean temperature as variable.