• Title/Summary/Keyword: early hardening

Search Result 136, Processing Time 0.025 seconds

The Change of Half Value Breadth and Residual Stress during Fatigue Process in S45C Steel (S45C강의 피로과정에 대한 반가폭 및 잔류응력의 변화)

  • Boo, Myung-Hwan;Koo, Hoo-Taek;Jeong, Jong-Hyun;Park, Young-Chul;Kim, Byeong-Soo;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.591-596
    • /
    • 2001
  • The purpose of this study is to examine the change of half value breadth and residual stress during fatigue process in S45C Steel by X-ray diffraction. For S45C Steel, the relationship between the change in fatigue damage of the specimen and the half value breadth, and residual stress of X-ray diffraction profiles during the fatigue processes has been investigated. The half value breadth(HVB) decreases in he early period of fatigue cycle. The change of HVB is relation to cyclic work hardening. In $10{\sim}20%$ of ratio of fatigue life, the change in the half value breadth is not marked. During fatigue process, the residual stress is changed with fatigue cycle increasing.

  • PDF

Pre-strain Effect on the Bauschinger Phenomenon of Non-Heat Treatable Cold Forging Steel (냉간 비조질강의 바우싱거 효과에 미치는 변형량의 영향)

  • Ha J. G.;Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • Since the required strength of forged part is achieved by work hardening with the accumulation of plastic strain during the cold working, severe load can be exerted on die system. So, dies are liable to the early fracture for the non-heat treated steel forging in comparison with the conventional mild steels. Therefore, it is necessary to lower the flow stress of steels as much as possible during forging steps. Bauschinger effect can be utilized to lower flow stress during forging steps by giving the tensile prestrain on the forging billet during wire drawing step. In the present study, the prestrain effect on Bauschinger phenomenon is studied to avoid difficulties with application of non-heat treated cold forging steels in practice.

  • PDF

A Study on the Characteristics of Beach Sand as Fine aggregate of Concrete (해사의 기본성질과 잔골재로서의 이용 방안에 관한 연구)

  • Hwang, Kyung-Koo;Jun, Hyun-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4265-4273
    • /
    • 1976
  • 1. Fine aggregates of concrete are very important for the construction works and construction cost determination. Most of fine aggregates are from the river sand, but the amount of storage in the river side is steadily decreasing due to continuous construction works. Therefore, another source of fine aggregates is needed to meet increasied demand of sand. 2. Beach sand is a possible source of fine aggregates. But rust of steel bar is caused by CL-chemical of beach sand. Therefore, desalinization of beach sand is requested to get durable reinforced concrete. Economical methods of desalinization are as follows. (a) Flooding and drainage method. (b) Washing of beach sand with water supply and mixing. (c) Spreading of beach sand on the land and leaching by rain water for a few month. 3. Hardening of concrete with beach sand is accelerated due to salt, Thus early stage strength increase leads to make cracks. Also later stage strength decreases and durability becomes worse. By using appropriate admixture, the quality of concrete can be improved.

  • PDF

The Worst-Case Optimal Design of An Interface Circuit for Satellite (Worst Case를 고려한 위성체 접속회로의 최적설계)

  • Lho, Yeung-Hwan;Lee, Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • The electrical characteristics of solid state devices such as BJT(Bipolar Junction Transistor) and MOSFET, etc, are altered by impinging nuclear radiation and temperature in the space environment. This phenomenon is well known and has been studied extensively since the early 1960's when satellites were first being designed and used in the United States. However, the studies and the developments of radiation hardening technologies for the electronic components at the industrial fields in our country has not been popular so far. The worst case design technology in the electrical circuit is required for the appropriate operation of solid state devices in the space environment. In this paper, the interface circuit used in KOMPSAT(Korea Multipurpose Satellite), which is now being operated since the one was launched in 1999, is optimally designed to accomodate the worst case design and radiation effect.

Effect of Strain Rate on Plastic Deformation Behavior of Y-CSZ Single Crystal

  • Cheong, Deock-Soo;Kim, Chang-Sam
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures by activating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasing strain rate from $\varepsilon=1.04\times10^{-5} sec^{-1}$ to $2.08\times10^{-5} sec^{-1}$ the yield drop was suppressed and resulted in higher Young's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using a transmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plastic deformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However, dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in the sample with higher strain rate, which may cause the higher work hardening.

Analysis and Measurements of Hydration Heat of Pile Cap of Approach Bridge in Incheon Bridge (인천대교 접속교 파일캡구조물의 수화열 해석 및 계측)

  • Park, Kyoung-Lae;Yun, Man-Guen;Shin, Hyun-Yang;Kim, Young-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.693-696
    • /
    • 2006
  • In massive hardening concrete structures, early age thermal cracking due to the heat of hydration may occur. There are many massive structures in Incheon bridge project and they have to be carefully treated to prevent thermal cracking. In this paper, an example of analyzed and measured results of hydration heat of pile caps in the Incheon bridge project was represented. Finite element simulations were carried out before casting and curing method was determined using the analyzed result. Sensors were installed before casting and temperature and strain of concrete was measured during curing. Gathered data were compared with the analyzed data and selected control method to prevent cracking was verified. Analyzed result gave good agreement and very few cracking could be found.

  • PDF

Development of Textures and Microstructures during Compression in a Hot-Extruded AZ31 Mg Alloy (고온압출한 AZ 31 마그네슘 합금의 압축변형 중 집합조직과 미세조직의 발달)

  • Jung, Byung Jo;Lee, Myung Jae;Park, Yong-Bum
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The development of textures and microstructures during plastic deformation in a hot-extruded AZ 31 Mg alloy was investigated using a compression test with such parameters as deformation temperature, strain rate. It was observed from true stress-strain curves that twinning involves changes of the flow stresses. In the early stages of deformation at temperatures lower than $200^{\circ}C$, the occurrence of twins resulted in a decrease of the work-hardening rate, which increased drastically at a true strain of -0.05. The evolution of the deformation textures were assessed with the aid of EBSD analyses in terms of the competition between twinning and slip activity.

Exothermic Curing System with Hot Wire in Cold Weather (열선을 사용하는 동절기 발열양생 평가시스템 개발)

  • Lee, Tae-Gyu;Lee, Jin-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.52-59
    • /
    • 2016
  • For almost of concrete structures by placing in cold weather, it is very important that the selection of curing method at early aged construction stage. The Exothermic curing method with hot wire and rapid hardening cement is used mostly to prevent the initial cracks and the strength decrease. Most of the construction sites, however, have not been applied to the optimal curing method caused by the simple approaches and the empirical judgements. Therefore, this paper has proposed a evaluation algorithm of the exothermic curing method for representing heating temperature, period, position of hot wire by analyzing the transient heat transfer solution. This has been implemented, moreover, using an object oriented programming language to develop structural analysis system taking account risk parameters. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.

Characterization of Microstructure and Mechanical Properties of High-Purity Iron Added with Copper

  • Taguchi, O.;Lee, Su Yeon;Uchikoshi, M.;Isshiki, M.;Lee, Chan Gyu;Suzuki, S.;Gornakov, Vladimir S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2012
  • An influence of the addition of copper (0.5, 1.0 and 1.5 mass% Cu) on the microstructure and mechanical properties of high purity iron (99.998 mass%) was characterized. The microstructure and microhardness of high-purity iron based samples, which were rolled at room temperature and subsequently annealed, were investigated in this work. The microstructure of the samples has been observed by electron back scattering diffraction (EBSD) and the mechanical properties have been studied by using micro-Vickers hardness test. The results of microstructural observation showed that deformation band was formed in high purity iron by rolling at room temperature, and it was recovered by annealing up to about 900 K. The microhardness results showed that the softening of high-purity iron occurred by annealing up to about 900 K, while the hardness of iron added with about 0.5-1.5 mass% copper was kept over 100 Hv and at the early time of annealing reached a maximum. The hardness of iron added with a small amount of copper may be attributed to precipitation hardening as well as solution hardening. The orientation of crystal in recrystallized grain was almost same as that of deformed grain.

Development of Biopsy Assist Device on Computed Tomography Using 3D Printing Technology (3D 프린팅 기술을 이용한 전산화단층영상 기반 조직 생검 보조기구 개발)

  • Jeong-Wan Kim;Youl-Hun Seoung
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.151-157
    • /
    • 2023
  • The purpose of this study was to develop an assist device that could correct and support patient position during biopsy on computed tomography (CT) using 3D printing technology. The development method was conducted in the order of 3D design, 3D output, intermediate evaluation for product, final assist device evaluation. The 3D design method was conducted in the order of prior research data survey, measurement, primary modeling, 3D printing, output evaluation, and supplementary modeling. The 3D output was the 3D printer (3DWOX 2X, Sindoh, Korea) with additive manufacturing technology and the polylactic acid (PLA) materials. At this time, the optimal strength was evaluated to infill degree of product as the 3D printing factors into 20%, 40%, 60%, and 80%. The intermediate evaluation and supplementation was measured noise in the region of interest (ROI) around the beam hardening artifact on the CT images. We used 128-channel MDCT (Discovery 75 HD, GE, USA) to scan with a slice thickness of 100 kVp, 150 mA, and 2.5 mm on the 3D printing product. We compared the surrounding noise of the final 3D printing product with the beginning of it. and then the strength of it according to the degree of infill was evaluated. As a result, the surrounding noise of the final and the early devices were measured at an average of 3.3 ± 0.5 HU and 7.1 ± 0.1 HU, respectively, which significantly reduced the noise of the final 3D printing product (p<0.001). We found that the percentage of infill according to the optimal strength was found to be 60%. Finally, development of assist devices for CT biopsy will be able to minimize artifacts and provide convenience to medical staff and patients.