• Title/Summary/Keyword: early fire detection

Search Result 98, Processing Time 0.026 seconds

A Study on Fire Recognition Algorithm Using Deep Learning Artificial Intelligence (딥러닝 인공지능 기법을 이용한 화재인식 알고리즘에 관한 연구)

  • Ryu, Jin-Kyu;Kwak, Dong-Kurl;Kim, Jae-Jung;Choi, Jung-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.275-277
    • /
    • 2018
  • Recently, the importance of an early response has been emphasized due to the large fire. The most efficient method of extinguishing a large fire is early response to a small flame. To implement this solution, we propose a fire detection mechanism based on a deep learning artificial intelligence. In this study, a small amount of data sets is manipulated by an image augmentation technique using rotating, tilting, blurring, and distorting effects in order to increase the number of the data sets by 5 times, and we study the flame detection algorithm using faster R-CNN.

  • PDF

Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials (다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 )

  • Heejun Kwon;Bohee Lee;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

Design of Emergency Fire Fighting and Inspection Robot Riding on Highway Guardrail

  • Ma, Xiaotong;Li, Xiaochen;Liu, Yanqiu;Tao, Xueheng
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.833-843
    • /
    • 2022
  • Based on the problems of untimely Expressway fire rescue and backward traditional fire rescue methods, an emergency fire fighting and inspection robot riding on expressway guardrail is designed. The overall mechanical structure design of emergency fire fighting and inspection robot riding on expressway guardrail is completed by using three-dimensional design software. The target fire detection is realized by using the target detection algorithm of Yolov5; By selecting a variety of sensors and using the control method of multi algorithm fusion, the basic function of robot on duty early warning is realized, and it has the ability of intelligent fire extinguishing. The BMS battery charging and discharging system is used to detect the real-time power of the robot. The design of the expressway emergency fire fighting and inspection robot provides a new technical means for the development of emergency fire fighting equipment, and improves the reliability and efficiency of expressway emergency fire fighting.

An Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model

  • Yoon, Seok-Hwan;Min, Joonyoung
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.621-632
    • /
    • 2013
  • The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.

Early Fire Detection System for Embedded Platforms: Deep Learning Approach to Minimize False Alarms (임베디드 플랫폼을 위한 화재 조기 감지 시스템: 오경보 최소화를 위한 딥러닝 접근 방식)

  • Seong-Jun Ro;Kwangjae Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.298-304
    • /
    • 2024
  • In Korea, fires are the second most common type of disaster, causing large-scale damages. The installation of fire detectors is legislated to prevent fires and minimize damage. Conventional fire detectors have limitations in initial suppression of failures because they detect fires when large amounts of smoke and heat are generated. Additionally, frequent malfunctions in fire detectors may cause users to turn them off. To address these issues, recent studies focus on accurately detecting even small-scale fires using multi-sensor and deep-learning technologies. They also aim at quick fire detection and thermal decomposition using gas. However, these studies are not practical because they overlook the heavy computations involved. Therefore, we propose a fast and accurate fire detection system based on multi-sensor and deep-learning technologies. In addition, we propose a computation-reduction method for selecting sensors suitable for detection using the Pearson correlation coefficient. Specifically, we use a moving average to handle outliers and two-stage labeling to reduce false detections during preprocessing. Subsequently, a deep-learning model is selected as LSTM for analyzing the temporal sequence. Then, we analyze the data using a correlation analysis. Consequently, the model using a small data group with low correlation achieves an accuracy of 99.88% and a false detection rate of 0.12%.

Development of Flame and Smoke Detection for Early Fire Recognition (화재 조기 인식을 위한 화염 및 연기 검출 알고리즘 개발)

  • Park, Jang-Sik;Kim, Dae-Kyung;Choi, Soo-Young;Lee, Young-Sung
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2008
  • In this paper, a flame and smoke detection algorithm is proposed to recognize a fire. Flame and smoke have specific color distribution and continuously change shapes of them. In the proposed flame detection algorithm, specific regions are candidated as flame by color distributions and variations of frames of video. Some of candidated regions are decided as flame by the magnitude of motion vector. To determine smoke in the field of view of camera, edge is important because high frequency component is decreased by it. Candidated region of smoke is assigned by color distributions, inter-frame differences and the value of edge. The candidated region is settled as smoke region with magnitude of motion vector. As results of simulations, it is shown that the proposed algorithm is useful for flame and smoke detection.

Design and Implementation of the Automatic Fire Extinguishing System Based on the Ignition Point Tracking using the Flame Detecter (화재감지기를 사용한 발화점추적기반의 자동소방시스템 설계 및 구현)

  • Paik, Seung Hyun;Kim, Young Wung;Oh, Se Il;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.155-161
    • /
    • 2013
  • To reduce the personnel and material loss caused by fire, we propose the automatic fire extinguishing system based on the ignition point tracking using the flame detecter. This automatic fire extinguishing system is composed of the flame detecting system and the fire extinguishing system based on the water cannon. We study the method for the ignition point tracking and the automatic fire extinguishing using the water cannon and the flame detecter. The flame detecting system for the early fire detection and the ignition point tracking has to be satisfied the requirement of the detecting range and the flame detection time. So we study the signal process algorithm for an improvement of the flame detecting system.

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

Flame and Smoke Detection Method for Early and Real-Time Detection of Tunnel Fire (터널 화재의 실시간 조기 탐지를 위한 화염 및 연기 검출 기법)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.59-70
    • /
    • 2008
  • In this paper, we proposed image processing technique for automatic real-time fire and smoke detection in tunnel environment. To avoid the large scale of damage of fire occurred in variety environments, it is purposeful to propose many studies to minimize and to discover the incident as fast as possible. But we need new specific algorithm because tunnel environment is quite different and it is difficult to apply previous fire detection algorithm to tunnel environment. Therefore, in this paper, we proposed specific algorithm which can be applied in tunnel environment. To minimize false detection in tunnel we used color and motion information. And it is possible to detect exact position in early stage with detection, test, verification procedures. In addition, by comparing properties of each algorithm throughout experiment, we have proved the validity and efficiency of proposed algorithm.

Consideration on Fire-prevention Facilities for Wooden Cultural Heritages (목조문화재 보존을 위한 소방시설에 대한 고찰)

  • Kim, Tae-Goo
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.155-171
    • /
    • 2010
  • Wooden cultural heritages have many factors of fires and structural characteristics vulnerable to the fire extinguishing. Also, they are surrounded with forests and so remote from fire stations, which make it difficult to handle it quickly when fires break out. Wooden cultural heritages made of wood materials belong to the general fire in a Class A. Taking characteristics such as a smoldering and a backfire from the that fire of wooden materials into consideration, extinguishing the fire by the cooling system is the most effective. If the fire can't be put out at the early stage, it is almost impossible to protect wooden cultural heritages from the fire, because wooden structures can be destroyed in a high temperature and in a short time and it takes around average 7 minutes to reach its peak of flames in the process of a fire. According to the geographical and environmental situation of the cultural heritages, currently, the fire-prevention facilities such as the auto fire detector for the prompt detection, the water mist fire suppression system for the 1st early and urgent fire suppression and the outdoor fire hydrant and the water curtain etc. for the 2nd full-scale suppression and the prevention of the fire gaining force are being installed for the wooden cultural heritages.

  • PDF