• 제목/요약/키워드: eLH/CGR

검색결과 7건 처리시간 0.023초

Signal Transduction of C-Terminal Phosphorylation Regions for Equine Luteinizing Hormone/Chorionic Gonadotropin Receptor (eLH/CGR)

  • Byambaragchaa, Munkhzaya;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Min, Kwan-Sik
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권1호
    • /
    • pp.1-12
    • /
    • 2022
  • This study aimed to investigate the signal transduction of phosphorylation sites at the carboxyl (C)-terminal region of equine luteinizing hormone/chorionic gonadotropin receptor (eLH/CGR). The eLH/CGR has a large extracellular domain of glycoprotein hormone receptors within the G protein-coupled receptors. We constructed a mutant (eLH/CGR-t656) of eLH/CGR, in which the C-terminal cytoplasmic tail was truncated at the Phe656 residue, through polymerase chain reaction. The eLH/CGR-t656 removed 14 potential phosphorylation sites in the intracellular C-terminal region. The plasmids were transfected into Chinese hamster ovary (CHO)-K1 and PathHunter Parental cells expressing β-arrestin, and agonist-induced cAMP responsiveness was analyzed. In CHO-K1 cells, those expressing eLH/CGR-t656 were lower than those expressing eLH/CGR wild-type (eLH/CGR-wt). The EC50 of the eLH/CGR-t656 mutant was approximately 72.2% of the expression observed in eLH/CGR-wt. The maximal response in eLH/CGR-t656 also decreased to approximately 43% of that observed in eLH/CGR-wt. However, in PathHunter Parental cells, cAMP activity and maximal response of the eLH/CGR-t656 mutant were approximately 173.5% and 100.8%, respectively, of that of eLH/CGR-wt. These results provide evidence that the signal transduction of C-terminal phosphorylation in eLH/CGR plays a pivotal role in CHO-K1 cells. The cAMP level was recovered in PathHunter Parental cells expressing β-arrestin. We suggest that the signal transduction of the C-terminal region phosphorylation sites is remarkably different depending on the cells expressing β-arrestin in CHO-K1 cells.

말의 LH/CGR를 발현하는 CHO 세포와 PathHunter Parental 세포에서 유전자 재조합 eCGβ/α의 생화학적 특성 (Biochemical Characterization of Recombinant Equine Chorionic Gonadotropin (rec-eCG), Using CHO Cells and PathHunter Parental Cells Expressing Equine Luteinizing Hormone/Chorionic Gonadotropin Receptors (eLH/CGR))

  • 이소연;?바락차 뭉흐자야;김정수;성훈기;강명화;민관식
    • 생명과학회지
    • /
    • 제27권8호
    • /
    • pp.864-872
    • /
    • 2017
  • eCG는 다른 포유동물에서 FSH와 LH의 활성을 나타내기 때문에 성선자극 호르몬 family에서 아주 특이적이고 많은 당쇄가 수식되어진 알파와 베타의 비공유결합으로 구성되어 있다. 유전자 재조합 $eCG{\beta}/{\alpha}$의 생물학적 기능을 규명하기 위하여 말의 LH/CGR의 포유동물발현용 벡터를 구축하였다. 재조합 $eCG{\beta}/{\alpha}$의 활성분석은 말의 LH/CGR가 일시적으로 발현되는 CHO-K1 세포와 지속적으로 발현되는 PathHunter Parental 세포를 이용하여 분석하였다. 유전자 재조합 $eCG{\beta}/{\alpha}$는 CHO-K1 부유세포의 상층으로 효율적으로 분비되었으며, 분비량은 transfection 후 1일에서 7일까지 약 200 mIU/ml이었다. Western blot 분석결과는 재조합 $eCG{\beta}/{\alpha}$의 분자량은 약 40-45 kDa으로 검출되었다. eLH/CGR가 발현되는 CHO-K1 세포에서의 cAMP분비량으로 재조합 $eCG{\beta}/{\alpha}$의 활성을 분석하였다. 그 결과 cAMP농도는 재조합 $eCG{\beta}/{\alpha}$의 농도의존적으로 증가하였다. eLH/CGR가 일시적으로 발현하는 CHO-K1 세포에서 $EC_{50}$ 값은 $8.1{\pm}6.5ng$이었다. 또한 일시적 및 지속적으로 eLH/CGR가 발현하는 PathHunter Parental 세포에서도 재조합 $eCG{\beta}/{\alpha}$의 LH 활성 분석결과 높은 활성을 나타내는 것으로 확인되었으며, 이들의 $EC_{50}$ 값은 각각 $5.0{\pm}4.7ng/ml$, $4.5{\pm}5.2ng/ml$으로 나타났다. 따라서 이러한 결과에 의하면 재조합 $eCG{\beta}/{\alpha}$는 말의 LH/CGR가 발현하는 세포에서 생물학적 활성을 나타난다는 것을 확인하였으며, PathHunter Parental 세포에서 지속적으로 발현되는 세포의 확보는 당쇄제거에 의한 재조합 eCG의 돌연변이등에 관한 기능적인 메커니즘을 밝히는데 유용할 것으로 사료된다.

Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells

  • Park, Jong-Ju;Seong, Hun-Ki;Kim, Jeong-Soo;Munkhzaya, Byambaragchaa;Kang, Myung-Hwa;Min, Kwan-Sik
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권2호
    • /
    • pp.111-120
    • /
    • 2017
  • Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG ($eCG{\beta}/{\alpha}$) and mutant eCG ($eCG{\beta}/{\alpha}{\Delta}56$) with an N-linked oligosaccharide at $Asn^{56}$ of the ${\alpha}-subunit$. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of $rec-eCG{\beta}/{\alpha}$. The dose-dependent response was highest when 10 ng of $rec-eCG{\beta}/{\alpha}$ was used. The deglycosylated $eCG{\beta}/{\alpha}{\Delta}56$ mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated $eCG{\beta}/{\alpha}{\Delta}56$ was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.

Specific Biological Activity of Equine Chorionic Gonadotropin (eCG) Glycosylation Sites in Cells Expressing Equine Luteinizing Hormone/CG (eLH/CG) Receptor

  • Byambaragchaa, Munkhzaya;Cho, Seung-Hee;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Kang, Myung-Hwa;Min, Kwan-Sik
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.199-211
    • /
    • 2021
  • Equine chorionic gonadotropin (eCG), produced by the endometrial cups of the placenta after the first trimester, is a specific glycoprotein that displays dual luteinizing hormone (LH)-like and follicle-stimulating hormone (FSH)-like effects in non-equid species. However, in equidaes, eCG exhibits only LH-like activity. To identify the specific biological functions of glycosylated sites in eCG, we constructed the following site mutants of N- and O-linked glycosylation: eCGβ/αΔ56, substitution of α-subunit56 N-linked glycosylation site; eCGβ-D/α, deletion of the O-linked glycosylation sites at the β-subunit, and eCGβ-D/αΔ56, double mutant. We produced recombinant eCG (rec-eCG) proteins in Chinese hamster ovary suspension (CHO-S) cells. We examined the biological activity of rec-eCG proteins in CHO-K1 cells expressing the eLH/CG receptor and found that signal transduction activities of deglycosylated mutants remarkably decreased. The EC50 levels of eCGβ/αΔ56, eCGβ-D/α, and eCGβ-D/αΔ56 mutants decreased by 2.1-, 5.6-, and 3.4-fold, respectively, compared to that of wild-type eCG. The Rmax values of the mutants were 56%-80% those of wild-type eCG (141.9 nmol/104 cells). Our results indicate that the biological activity of eCG is greatly affected by the removal of N- and O-linked glycosylation sites in cells expressing eLH/CGR. These results provide important information on rec-eCG in the regulation of specific glycosylation sites and improve our understanding of the specific biological activity of rec-eCG glycosylation sites in equidaes.

융모성 성선자극 호르몬 및 난포 자극호르몬 수용체의 293세포에서 기능적으로 발현 (Functional Expression of Lutropin/Choriogonadotropin and Follitropin Receptor cDNAs in 293 Cells)

  • Min, K.S.
    • 한국가축번식학회지
    • /
    • 제23권4호
    • /
    • pp.347-352
    • /
    • 1999
  • 1. 유전자 재 조합 호르몬 (eCG IPMSG, hCG 및 hFSH)의 활성체크 및 세포내 signal transduction에 관한 기초연구를 위하여 rat의 융모성 성선자극 호르몬 수용체 (LH/CGR) 및 난포 자극호르몬 수용체 (FSHR)를 이미 보고되어진 염기배열에 의하여 PCR 방법으로 크로닝 하여, human embryonic kidney 유래의 293 세포에 transfection 하여 세포 표면에 LH/CGR와 FSHR를 발현하는 cell lines을 분리하였다. 2. hCG와 FSH의 signal을 전달하는 능력은 hCG와 FSH 또는 eCG의 농도증가에 따라 이들 수용체로 하여금 세포내의 cAMP 분비가 증가함을 알 수 있었다. 즉, transfection 되어진 이들 수용체를 발현하는 수용체의 대부분은 ligand binding 기능올 가지고, cAMP 반응에 의한 생리활성을 분석할 수 있으며, 또한 유전자 재조합당 단백질 호르몬 (eCG, hCG 및 hFSH)의 signal transduction, 구조 및 기능연구에 활용할 수 있다.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionicgonadotropin Receptor

  • Min, K. S.
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2000년도 국제심포지움
    • /
    • pp.10-12
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$-subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was. efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to consist of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t63I or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632-653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17-fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • 한국가축번식학회지
    • /
    • 제24권4호
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF