• Title/Summary/Keyword: eIF2S2

Search Result 753, Processing Time 0.037 seconds

WEAK AND STRONG CONVERGENCE OF MANN'S-TYPE ITERATIONS FOR A COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS

  • Song, Yisheng;Chen, Rudong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1393-1404
    • /
    • 2008
  • Let K be a nonempty closed convex subset of a Banach space E. Suppose $\{T_{n}\}$ (n = 1,2,...) is a uniformly asymptotically regular sequence of nonexpansive mappings from K to K such that ${\cap}_{n=1}^{\infty}$ F$\(T_n){\neq}{\phi}$. For $x_0{\in}K$, define $x_{n+1}={\lambda}_{n+1}x_{n}+(1-{\lambda}_{n+1})T_{n+1}x_{n},n{\geq}0$. If ${\lambda}_n{\subset}[0,1]$ satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n=0$, we proved that $\{x_n\}$ weakly converges to some $z{\in}F\;as\;n{\rightarrow}{\infty}$ in the framework of reflexive Banach space E which satisfies the Opial's condition or has $Fr{\acute{e}}chet$ differentiable norm or its dual $E^*$ has the Kadec-Klee property. We also obtain that $\{x_n\}$ strongly converges to some $z{\in}F$ in Banach space E if K is a compact subset of E or there exists one map $T{\in}\{T_{n};n=1,2,...\}$ satisfy some compact conditions such as T is semi compact or satisfy Condition A or $lim_{n{\rightarrow}{\infty}}d(x_{n},F(T))=0$ and so on.

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

  • Ryu, Dae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.841-849
    • /
    • 2009
  • Let {$X_n$, n ${\ge}$ 1} be a negatively associated sequence of identically distributed random variables with mean zeros and positive finite variances. Set $S_n$ = ${\Sigma}^n_{i=1}\;X_i$. Suppose that 0 < ${\sigma}^2=EX^2_1+2{\Sigma}^{\infty}_{i=2}\;Cov(X_1,\;X_i)$ < ${\infty}$. We prove that, if $EX^2_1(log^+{\mid}X_1{\mid})^{\delta}$ < ${\infty}$ for any 0< ${\delta}{\le}1$, then $\lim_{{\epsilon}\downarrow0}{\epsilon}^{2{\delta}}\sum_{{n=2}}^{\infty}\frac{(logn)^{\delta-1}}{n^2}ES^2_nI({\mid}S_n{\mid}\geq{\epsilon}{\sigma}\sqrt{nlogn}=\frac{E{\mid}N{\mid}^{2\delta+2}}{\delta}$, where N is the standard normal random variable. We also prove that if $S_n$ is replaced by $M_n=max_{1{\le}k{\le}n}{\mid}S_k{\mid}$ then the precise rate still holds. Some results in Fu and Zhang (2007) are improved to the complete moment case.

G-REGULAR SEMIGROUPS

  • Sohn, Mun-Gu;Kim, Ju-Pil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.203-209
    • /
    • 1988
  • In this paper, we define a g-regular semigroup which is a generalization of a regular semigroup. And we want to find some properties of g-regular semigroup. G-regular semigroups contains the variety of all regular semigroup and the variety of all periodic semigroup. If a is an element of a semigroup S, the smallest left ideal containing a is Sa.cup.{a}, which we may conveniently write as $S^{I}$a, and which we shall call the principal left ideal generated by a. An equivalence relation l on S is then defined by the rule alb if and only if a and b generate the same principal left ideal, i.e. if and only if $S^{I}$a= $S^{I}$b. Similarly, we can define the relation R. The equivalence relation D is R.L and the principal two sided ideal generated by an element a of S is $S^{1}$a $S^{1}$. We write aqb if $S^{1}$a $S^{1}$= $S^{1}$b $S^{1}$, i.e. if there exist x,y,u,v in $S^{1}$ for which xay=b, ubv=a. It is immediate that D.contnd.q. A semigroup S is called periodic if all its elements are of finite order. A finite semigroup is necessarily periodic semigroup. It is well known that in a periodic semigroup, D=q. An element a of a semigroup S is called regular if there exists x in S such that axa=a. The semigroup S is called regular if all its elements are regular. The following is the property of D-classes of regular semigroup.group.

  • PDF

PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE FOR DEPENDENT RANDOM VARIABLE

  • Han, Kwang-Hee
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.369-380
    • /
    • 2009
  • Let $X,X_1,X_2,\;{\cdots}$ be identically distributed and negatively associated random variables with mean zeros and positive, finite variances. We prove that, if $E{\mid}X_1{\mid}^r$ < ${\infty}$, for 1 < p < 2 and r > $1+{\frac{p}{2}}$, and $lim_{n{\rightarrow}{\infty}}n^{-1}ES^2_n={\sigma}^2$ < ${\infty}$, then $lim_{{\epsilon}{\downarrow}0}{\epsilon}^{{2(r-p}/(2-p)-1}{\sum}^{\infty}_{n=1}n^{{\frac{r}{p}}-2-{\frac{1}{p}}}E\{{{\mid}S_n{\mid}}-{\epsilon}n^{\frac{1}{p}}\}+={\frac{p(2-p)}{(r-p)(2r-p-2)}}E{\mid}Z{\mid}^{\frac{2(r-p)}{2-p}}$, where $S_n\;=\;X_1\;+\;X_2\;+\;{\cdots}\;+\;X_n$ and Z has a normal distribution with mean 0 and variance ${\sigma}^2$.

SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • Han, Yingbo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1651-1670
    • /
    • 2016
  • In this paper, we investigate exponentially biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if $\int_{M}e^{\frac{p{\mid}r(u){\mid}^2}{2}{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$ ($p{\geq}2$), $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}d(u){\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, we get that if $\int_{M}e^{\frac{pm^2{\mid}H{\mid}^2}{2}}{\mid}H{\mid}^qdv_g$ < ${\infty}$ for 2 ${\leq}$ p < ${\infty}$ and 0 < q ${\leq}$ p < ${\infty}$, then u is minimal. We also obtain that any weakly convex exponentially biharmonic hypersurface in space form N(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to conjecture 3 (generalized Chen's conjecture for exponentially biharmonic submanifolds).

RING WHOSE MAXIMAL ONE-SIDED IDEALS ARE TWO-SIDED

  • Huh, Chan;Jang, Sung-Hee;Kim, Chol-On;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.411-422
    • /
    • 2002
  • In this note we are concerned with relationships between one-sided ideals and two-sided ideals, and study the properties of polynomial rings whose maximal one-sided ideals are two-sided, in the viewpoint of the Nullstellensatz on noncommutative rings. Let R be a ring and R[x] be the polynomial ring over R with x the indeterminate. We show that eRe is right quasi-duo for $0{\neq}e^2=e{\in}R$ if R is right quasi-duo; R/J(R) is commutative with J(R) the Jacobson radical of R if R[$\chi$] is right quasi-duo, from which we may characterize polynomial rings whose maximal one-sided ideals are two-sided; if R[x] is right quasi-duo then the Jacobson radical of R[x] is N(R)[x] and so the $K\ddot{o}the's$ conjecture (i.e., the upper nilradical contains every nil left ideal) holds, where N(R) is the set of all nilpotent elements in R. Next we prove that if the polynomial rins R[x], over a reduced ring R with $\mid$X$\mid$ $\geq$ 2, is right quasi-duo, then R is commutative. Several counterexamples are included for the situations that occur naturally in the process of this note.

ENERGY FINITE SOLUTIONS OF ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.807-819
    • /
    • 2008
  • We prove that for any continuous function f on the s-harmonic (1{\infty})$ boundary of a complete Riemannian manifold M, there exists a solution, which is a limit of a sequence of bounded energy finite solutions in the sense of supremum norm, for a certain elliptic operator A on M whose boundary value at each s-harmonic boundary point coincides with that of f. If $E_1,\;E_2,...,E_{\iota}$ are s-nonparabolic ends of M, then we also prove that there is a one to one correspondence between the set of bounded energy finite solutions for A on M and the Cartesian product of the sets of bounded energy finite solutions for A on $E_i$ which vanish at the boundary ${\partial}E_{\iota}\;for\;{\iota}=1,2,...,{\iota}$

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

BOUNDED MOVEMENT OF GROUP ACTIONS

  • Kim, Pan-Soo
    • Communications of Mathematical Education
    • /
    • v.5
    • /
    • pp.523-523
    • /
    • 1997
  • Suppose that G is a group of permutations of a set ${\Omega}$. For a finite subset ${\gamma}$of${\Omega}$, the movement of ${\gamma}$ under the action of G is defined as move(${\gamma}$):=$max\limits_{g{\epsilon}G}|{\Gamma}^{g}{\backslash}{\Gamma}|$, and ${\gamma}$ will be said to have restricted movement if move(${\gamma}$)<|${\gamma}$|. Moreover if, for an infinite subset ${\gamma}$of${\Omega}$, the sets|{\Gamma}^{g}{\backslash}{\Gamma}| are finite and bounded as g runs over all elements of G, then we may define move(${\gamma}$)in the same way as for finite subsets. If move(${\gamma}$)${\leq}$m for all ${\gamma}$${\subseteq}$${\Omega}$, then G is said to have bounded movement and the movement of G move(G) is defined as the maximum of move(${\gamma}$) over all subsets ${\gamma}$ of ${\Omega}$. Having bounded movement is a very strong restriction on a group, but it is natural to ask just which permutation groups have bounded movement m. If move(G)=m then clearly we may assume that G has no fixed points is${\Omega}$, and with this assumption it was shown in [4, Theorem 1]that the number t of G=orbits is at most 2m-1, each G-orbit has length at most 3m, and moreover|${\Omega}$|${\leq}$3m+t-1${\leq}$5m-2. Moreover it has recently been shown by P. S. Kim, J. R. Cho and C. E. Praeger in [1] that essentially the only examples with as many as 2m-1 orbits are elementary abelian 2-groups, and by A. Gardiner, A. Mann and C. E. Praeger in [2,3]that essentially the only transitive examples in a set of maximal size, namely 3m, are groups of exponent 3. (The only exceptions to these general statements occur for small values of m and are known explicitly.) Motivated by these results, we would decide what role if any is played by primes other that 2 and 3 for describing the structure of groups of bounded movement.

  • PDF