• Title/Summary/Keyword: eAI 프레임워크

Search Result 5, Processing Time 0.018 seconds

A Web Services based e-Business Application Integration Framework (웹 서비스 기반 e-비즈니스 응용 프로그램 통합 프레임워크)

  • Lee Sung-Doke;Han Dong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.6
    • /
    • pp.514-530
    • /
    • 2005
  • This paper proposes a compact eAI framework for the integration of various types of applications deployed on different platforms in the Internet. The applications are connected and invoked to achieve a business goal by the coordination of the workflow system in the framework. for the construction of the framework, five sub-modules are elicited and the functions and roles of each module are defined. The elicited five sub-modules include business process modeling tool, eAI platform, business processes transform module, UDDI connection module, and workflow system. In the framework, intra and inter organizational applications can be integrated together across firewalls. In this paper, the extension of a workflow system to implement the framework is also described in detail and the usefulness of the framework is ascertained by implementing an application process within the framework. A full-fledged eAI solution can be constructed by gradually adding supplementary functions within this framework.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

XMDR Hub Framework for Business Process Interoperability based on Store-Procedure (저장-프로시저 기반의 비즈니스 프로세스 상호운용을 위한 XMDR Hub 프레임워크)

  • Moon, Seok-Jae;Jung, Gye-Dong;Kang, Seok-Joong;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2207-2218
    • /
    • 2008
  • Various kind of business process exists within enterprise. These business processes achieve business purposes while operate and control using eAI solution. However legacy systems-ERP, PDM are able to many cooperations and interoperability. Generally real data is becoming interoperability using query based on store-procedure on legacy system for business process transaction. Also, It may occur some problems among schema conversion, matching, mapping and other heterogeneous between data interoperability in process. We propose business process interoperability framework based on XMDR Hub that can guarantee interoperability between legacy systems using process that is consisted of SQL query based on store-procedure. It is easy to process data interoperability between legacy systems when business process execute.

Assurance of HIT (head impulse test, Saccade based Vestibular Anomaly Detection) using Confidence Interval of Optical Flow Comparison on Wasserstein Metric (Optical Flow 기반의 Saccade 탐지를 통한 전정기관 이상 검출과 Dowhy 기반의 연관 관계의 신뢰도 검정)

  • Ji, Myeongjin;Kim, Tae-Hyun;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.273-276
    • /
    • 2021
  • 최근의 기계 학습 (딥러닝)은 기존의 전통적인 통계 분석 방법들에 비해 효율성과 정확도가 높은 장점이 있지만, 처리과정이 블랙박스와 같아 결과 값의 중요한 원인 또는 근거 요인을 찾기 어렵다는 단점을 가지고 있다. 이를 해결하기 위한 최근의 XAI (eXplainable AI) 연구를 기반으로 하여, 본 논문에서는 의료기관에서 전정기관의 이상을 판별하기 위해 수작업으로 이루어지고 있는 HIT (head impulse test) 테스트 결과를 자동화하고, 설득력 있는 신뢰도 검정을 위해, XAI 기반 DoWhy 프레임 워크를 사용하였다. 전정기관 이상으로 의심되는 환자의 동공 움직임을 optical flow 로 추적하고, 정상인과의 Wasserstein metric 의 DoWhy 검증을 통해 전정기관 이상 여부의 신뢰도 구간을 검정한다.

A Study on Geospatial Information Role in Digital Twin (디지털트윈에서 공간정보 역할에 관한 연구)

  • Lee, In-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.268-278
    • /
    • 2021
  • Technologies that are leading the fourth industrial revolution, such as the Internet of Things (IoT), big data, artificial intelligence (AI), and cyber-physical systems (CPS) are developing and generalizing. The demand to improve productivity, economy, safety, etc., is spreading in various industrial fields by applying these technologies. Digital twins are attracting attention as an important technology trend to meet demands and is one of the top 10 tasks of the Korean version of the New Deal. In this study, papers, magazines, reports, and other literature were searched using Google. In order to investigate the contribution or role of geospatial information in the digital twin application, the definition of a digital twin, we investigated technology trends of domestic and foreign companies; the components of digital twins required in manufacturing, plants, and smart cities; and the core techniques for driving a digital twin. In addition, the contributing contents of geospatial information were summarized by searching for a sentence or word linked between geospatial-related keywords (i.e., Geospatial Information, Geospatial data, Location, Map, and Geodata and Digital Twin). As a result of the survey, Geospatial information is not only providing a role as a medium connecting objects, things, people, processes, data, and products, but also providing reliable decision-making support, linkage fusion, location information provision, and frameworks. It was found that it can contribute to maximizing the value of utilization of digital twins.