• Title/Summary/Keyword: e-nos

Search Result 558, Processing Time 0.027 seconds

Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells (Salidroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 불활성화를 통한 LPS에)

  • Won, So-Jung;Park, Hee-Juhn;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • In this study, we investigated the anti-inflammatory effects of salidroside (SAL) isolated from the MeOH extract of Acer tegmentosum Maxim heartwood in RAW 264.7 macrophage cells. SAL pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Western blot and RT-PCR analyses revealed that SAL inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, SAL reduced the release and the mRNA expressions of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). Furthermore, nuclear factorkappa B ($NF{-\kappa}B$) luciferase reporter assay was performed to know the involvement of SAL in the production of pro-inflammatory cytokines, we confirmed that LPS-induced transcription activity of $NF{-\kappa}B$ was inhibited by SAL. Taken together, our data indicate that anti-inflammatory property of salidroside might be the result from the inhibition of iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expressions via the down-regulation of $NF{-\kappa}B$ activity.

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 by Gamijihwang-tang Via Suppression of Nuclear Factor-B Activation in RAW 264.7 cells

  • Jang Du-Hyun;Kim Ji-Young;Han Eun-Hee;Park Hee-Ok;Kim Dong-Hee;Jeong Hye-Gwang;Yoo Dong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1405-1410
    • /
    • 2005
  • Asthma is recognized today as an inflammatory disease of the lung characterized by acute non-specific airway hypersensitiveness in association with chronic pulmonary inflammation. Gamijihwang-tang(GJT), a fortified prescription of YMJHT, is applied for the treatments of chronic coughing and asthma, and post-delivery coughing and asthma in the gynecology. Also in the clinical practice, GJT is known to be very effective for controlling coughing and asthma as a cold sequoia. In this study, we investigated the effects of GJT on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production, and on the level of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 expression in murine macrophage RAW 264.7 cells. We found that GJT inhibited LPS-induced NO and $PGE_2$ production in a dose dependent manner. Furthermore, GJT inhibited the expression of LPS-induced iNOS and COX-2 protein and mRNA expression in RAW 264.7 macrophages. Treatment with GJT of RAW 264.7 cells transfected with a reporter construct indicated a reduced level of LPS-induced nuclear factor-KB (NF-kB) activity and effectively lowered NF-kB binding as measured by transient transfection assay. These results suggest that the main inhibitory mechanism of the GJT may be the reduction of iNOS and COX-2 gene expression through blocking of NF-kB activation.

Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

  • Cha, Jae Hoon;Kim, Woo Kyoung;Ha, Ae Wha;Kim, Myung Hwan;Chang, Moon Jeong
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.90-96
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS: Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and $30{\mu}M$ lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B ($NF-{\kappa}B$), inhibitor kappa B ($I{\kappa}B$), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were determined via enzyme-linked immunosorbent assays. RESULTS: In cells treated with lycopene and LPS, the mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P < 0.05). The concentrations of $PGE_2$ and NO decreased according to the lycopene concentration (P < 0.05). The protein expressions of $NF-{\kappa}B$ and JNK were decreased significantly according to lycopene concertation (P < 0.05). CONCLUSIONS: Lycopene restrains $NF-{\kappa}B$ and JNK activation, which causes inflammation, and suppresses the expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, COX-2, and iNOS in SW480 human colorectal cancer cells.

Anti-Inflammatory Effects of Haliotidis Concha (석결명(石決明)의 항염증효과(抗炎症效果))

  • Moon, Soo-Young;Kim, Young-Woo;Kim, Sang-Chan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.4
    • /
    • pp.70-80
    • /
    • 2013
  • Objectives : Haliotidis Concha has been used to treat various human diseases such as liver dysfunction and inflammatory disorder. Although it has been shown the effects of Haliotidis Concha on the various diseases, it has almost not been studied about the anti-inflammatory effects of the Haliotidis Concha and its mechanisms. Methods : This research investigated the effects of the Haliotidis Concha ethanol extract (HCE) on the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) as well as tumor necrosis factor-alpha (TNF-${\alpha}$). The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were assayed by immunoblot analyses, and the productions of NO, $PGE_2$ and TNF-${\alpha}$ were assessed by ELISA. Results : Haliotidis Concha decreased the production of NO and $PGE_2$, and inhibited the expression iNOS and COX-2 proteins in a concentration-dependent manner in LPS-treated Raw 264.7 cells. HCE suppressed the ability of LPS to activate the signaling pathways of nuclear factor kappa B (NF-${\kappa}B$) as indicated by HCE inhibited nuclear NF-${\kappa}B$ level and I-${\kappa}B{\alpha}$ phosphorylation. Also, HCE inhibited mitogen-activated protein kinases (MAPKs). Conclusions : HCE repressed the production of LPS-inducible NO, $PGE_2$ and TNF-${\alpha}$, which may be mediated by inhibition of NF-${\kappa}B$ translocation. This study suggest the use for the treatment of acute inflammatory disorders.

Scoparone from Artemisia capillaris Inhibits the Release of Inflammatory Mediators in RAW 264.7 Cells upon Stimulation Cells by Interferon-${\gamma}$ Plus LPS

  • Jang Seon Il;Kim Young-Jun;Lee Woo-Yiel;Kwak Kyung Chell;Baek Seung Hwa;Kwak Gyu Beum;Yun Young-Gab;Kwon Tae-Oh;Chung Hun Taeg;Chai Kyu-Yun
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.203-208
    • /
    • 2005
  • Scoparone is a major component of the shoot of Artemisia capillaris (Compositae), which has been used for the treatment of hepatitis and biliary tract infection in oriental countries. In the present study we observed that, scorparone exhibited no cytotoxic effect in unstimulated macrophages, but reduced the release of nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ upon stimulation by IFN-${\gamma}$/LPS or LPS. The inhibitory effects were found to be in conjuction with the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in IFN-${\gamma}$/LPS stimulated RAW 264.7 cells. Moreover, scoparone also attenuated the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. These results suggest that scoparone decreases the production of the inflammatory mediators such as NO and $PGE_2$ in macrophages by inhibiting iNOS and COX-2 expression.

Aqueous extract of Lycii fructus suppresses inflammation through the inhibition of nuclear factor kappa B signal pathway in murine raw 264.7 macrophages

  • Kim, Beum-Seuk;Lim, Hyung-Ho;Song, Yun-Kyung;Sung, Yun-Hee;Kim, Sung-Eun;Chang, Hyun-Kyung;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Hye-Jung;Kim, Dong-Hee
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.155-164
    • /
    • 2010
  • Lycii fructus is the fruit of Lycium chinense Miller and is part of the Solanaceae family. Lycii fructus produces various effects such as hypotensive, hypoglycemic, anti-pyretic, and anti-stress activities. Lycii fructus is known to contain betaine, carotene, nicotinic acid, zeaxanthin, and cerebroside. In the present study, the effects of Lycii fructus aqueous extract on lipopolysaccharide (LPS)-induced inflammation in murine raw 264.7 macrophage cells were investigated. In this study we utilized the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), Western blotting, and nitric oxide (NO) detection. Lycii fructus aqueous extract suppressed NO production by inhibiting the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-$\alpha$) mRNA and iNOS protein in murine raw 264.7 macrophage cells. Also, Lycii fructus aqueous extract suppressed the activation of nuclear factor-kappa B (NF-${\kappa}B$) in the nucleus. These results demonstrated that Lycii fructus aqueous extract causes an anti-inflammatory effect that was likely produced by the suppression of iNOS expression through the down-regulation of NF-$\hat{e}B$ binding activity.

NF-kB and AP-1-regulatory Mechanism of Buthus Martensi Karsch Herbal Acupuncture Solution on Inflammatory Cytokine-induced Human Chondrocytes Dysfunction

  • Cho, Jae-Yong;Kim, Kyung-Ho;Cho, Hyun-Seok;Lim, Dae-Jung;Hwang, Ji-Hye;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.61-72
    • /
    • 2006
  • Objectives : Human chondrocytes co-treated with Buthus martensi Karsch herbal acupuncture solution(BMK-HAS) extract produced significantly less NO compared with chondrocytes stimulated with $IL-1{\beta}$ alone Methods : Activation and translocation of and NF-kB DNA binding activity were determined by Western blotting and specific enzyme-linked immunosorbent assay. Results : The inhibition of NO production correlated with the suppression of induction and expression of nuclear factor-kB (NF-kB) and activation protein-1 (AP-1)-dependent gene. BMK-HAS inhibited the activation and translocation of NF-kB to the nucleus, indicating that BMK-HAS inhibits the $IL-1{\beta}-induced$ production of NO in human chondrocytes by interfering with the activation of NF-kB through a novel mechanism. In addition, BMK-HAS reduced prostaglandin E2 (PGE2)production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) or cyclooxygenase-1 (COX-1) was observed. My data, therefore, suggest that BMK-HAS may be a therapeutically effective inhibitor of $IL-1{\beta}-induced$ inflammatory effects that are dependent on NF-kB activation in human OA chondrocytes. Conclusion : The results indicate that BMK-HAS exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2 through the transcription factors NF-kB and AP-1.

  • PDF

The Effects of Bangpungtongsungsan Extract to the Skin Damage on Mice Model after Atopic Dermatitis Elicitation (방풍통성산(防風通聖散)이 아토피 피부염을 유발한 동물모델의 피부 손상에 미치는 영향)

  • Son, Jung-Min;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.99-114
    • /
    • 2007
  • Objectives : Atopic dermatitis has a close relationship with damage of skin barrier function. To investigate the effects of Bangpungtongsungsan(BT) extract to the skin damage on mice model after atopic dermatitis elicitation, this study was done through forcing injury to mice's skin. Methods : The BALB/c mice were distributed into three groups: control(CON) group, atopic dermatitis(AD)-elicited group, Bangpungtongsungsan(BT)-treated group. AD-elicited and BT-treated group were caused AD according to the method of Christophers E., Mrowietz and Minehiro. The BT extract was administered for 48 hours to BT-treated group. We observed changes of external dermal formation, eosinophils in vasculature, lipid formation in stratum corneum, distribution of ceramide, distribution of capillary, $I{\kappa}B$ kinase(IKK) and induce nitric oxide synthase(iNOS) mRNA expression. We used the statistical methods of student t-test(p<0.05). Results : After dispensing BT extract into the AD-elicited group, the number of eosinophil as an atopic index in mice noticeably decreased and dermal injury decreased. Also the decrease of hyperplasia, degranulated mast cells, angiogenesis and substance P were shown. The lipid lamellae, lipid protect formation, were repaired and the distribution of ceramide which inhibit protein kinase C(PKC) activation increased, and the PKC caused inhibition of nuclear $factor(NF)-{\kappa}B$ activation. As a result of inhibition of $NF-{\kappa}B$ activation, iNOS production were inhibited and apoptotic cell were increased. Moreover the decrease of IKK and iNOS mRNA expression in BT-treated RAW 264.7 cell were noted. Conclusion : BT mitigated skin damage on mice model after atopic dermatitis elicitation through recovering skin barrier function and inhibiting nuclear $factor(NF)-{\kappa}B$ activation.

  • PDF

The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies

  • Wang, Qiu-Hua;Kuang, Na;Hu, Wen-yue;Yin, Dan;Wei, Ying-Yi;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.61.1-61.16
    • /
    • 2020
  • Background: Panax notoginseng saponins (PNS) are bioactive substances extracted from P. notoginseng that are widely used to treat cardiovascular and cerebrovascular diseases and interstitial diseases. PNS have the functions of scavenging free radicals, anti-inflammation, improving blood supply for tissue and so on. Objectives: The aim of this study was to investigate the effects of PNS on the oxidative stress of immune cells induced by porcine circovirus 2 (PCV2) infection in vitro and in vivo. Methods: Using an oxidative stress model of PCV2 infection in a porcine lung cell line (3D4/2 cells) and mice, the levels of nitric oxide (NO), reactive oxygen species (ROS), total glutathione (T-GSH), reduced glutathione (GSH), and oxidized glutathione (GSSG) and the activities of xanthine oxidase (XOD), myeloperoxidase (MPO) and inducible nitric oxide synthetase (iNOS) were determined to evaluate the regulatory effects of PNS on oxidative stress. Results: PNS treatment significantly reduced the levels of NO and ROS, the content of GSSG and the activities of XOD, MPO, and iNOS (p < 0.05), while significantly increasing GSH and the ratio of GSH/GSSG in infected 3D4/2 cells (p < 0.05).Similarly, in the in vivo study, PNS treatment significantly decreased the level of ROS in spleen lymphocytes of infected mice (p < 0.05), increased the levels of GSH and T-GSH (p < 0.05), significantly decreased the GSSG level (p < 0.05), and decreased the activities of XOD, MPO, and iNOS. Conclusions: PNS could regulate the oxidative stress of immune cells induced by PCV2 infection in vitro and in vivo.

Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells (청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.