최근 스마트 시대에 디지털 컨버젼스(digital convergence)의 대표기기로 대두되고 있는 태블릿 PC는 휴대전화와 컴퓨터의 기능을 바탕으로 장소의 제한 없이 네트워크에 접속할 수 있다. 이는, 개인의 일상생활에서 큰 영향을 미치고 있는 실정이다. 10년 이상 e러닝이 주도해 온 IT교육시장에서 스마트러닝으로의 변화는 새로운 플랫폼을 구축하는 그 이상의 의미를 가진다. 스마트 러닝은 기존의 수직적인 학습방식을 수평적, 참여적, 지능적, 그리고 상호작용적인 방식으로 전환하여 학습의 효과를 높였다. 이러한 트랜드를 반영하여 스마트러닝의 장점을 극대화 시킬 수 있는 학습자 중심의 컨버젼스 러닝시스템(learning system)을 구현하고자 하였다. 또한, 영어의 중요성이 대두되면서 영어 인증시험에 대한 관심이 날로 커지고 있다. 그리하여 바쁜 일상생활 중에서 시간과 장소에 구애 받지 않고 태블릿 PC를 통하여 영어 인증시험을 공부할 수 있는 어플리케이션을 기획하였다. 본 LEMON(Learn English Mobile ON-air) 앱(application)은 영어 학습 시간이 충분하지 않은 대학생 및 직장인 등을 대상으로 TOEIC, TOEFL, TOEIC SPEAKING 영어 인증시험에 대한 학습이 가능하도록 구현하였다.
원격교육과 e-러닝의 차세대 형태로 모바일 교육에 대한 관심이 급증하고 있다. 이러한 모바일 교육은 스마트폰을 중심으로 전개되고 있으며 사이버 대학교뿐만 아니라 일반 오프라인 대학에서도 적극적인 움직임을 보이고 있다. 본 논문에서는 u-캠퍼스 환경기반에서의 모바일 교육 서비스 시스템을 설계하였다. 모바일 교육 서비스 시스템은 u-캠퍼스 환경기반에서 교육 수요자들인 학생들에게 시공간의 제약 및 디바이스에 제약이 없는 학습 환경 시스템을 제공하고 모바일 캠퍼스 플랫폼 기반의 m-러닝 시스템을 설계한 것이다.
SCORM은 기존의 e-learning 시스템에서 컨텐츠가 플랫폼에 상관없이 재사용될 수 있도록 하는 주요 목적아래 고안되었다. 그런데 이런 SCORM을 기반으로 하는 LMS에 많은 수의 컨텐츠 객체가 있을 경우 속도가 느려지게 될 수 있다. 이를 개선하기 위하여 본 논문에서는 사용자의 접근 빈도와 사용 시간이 높은 컨텐츠 객체를 모니터링하고 컨텐츠 객체마다 우선순위를 매겨서 그 우선순위에 맞게 primary 저장소에 따로 저장하는 시스템을 제안하였다. 이 시스템을 통해 검색 시에 더 많이 사용되는 교육용 컨텐츠에 더 빨리 접근 할 수 있도록 하여 전체적으로 LMS의 성능을 향상시키고자 하였다.
아프리카를 비롯한 개발도상국은 균등한 교육기회 박탈, 열악한 교육여건, 선진국과의 정보화 격차 등으로 인적자원개발이 미미한 실정이다. 우수한 인적자원을 확보하지 못한 개발도상국은 선진국과의 세계화 경쟁에서 더욱 뒤쳐지고 있어, 개발도상국의 '인적자원개발' 문제는 시급히 해결해야 할 과제가 아닐 수 없다. 개발도상국은 교육 예산이 교육수요를 충족하고 의무 교육을 달성하기에 턱없이 낮은 수준이어서 양적으로 증가하는 교육 수요에 적절히 대응하지 못하고 있는 실정이며, 이러한 교육예산의 부족 문제는 교육 인프라 부족 문제로 연결이 된다. 본 연구에서는 NAS기반의 서버를 구성하여 교육 콘텐츠 및 학습관리 등의 기능을 구성하고, 클라이언트 영역은 태블릿, PC, 빔 프로젝터 등 다양한 미디어를 활용이 가능하도록 솔루션을 제시하여, 인트라넷 환경의 어학교육 지원을 위한 쾌적한 교육환경의 구성 및 SCORM 기반의 플랫폼을 구축을 통한 개발도상국의 최적화된 이러닝 서비스를 지원하고자 한다.
본 연구는 의류의 디자인 간 치수의 불일치와 비표준화로 인해 온라인 구매 시 발생하는 치수 선택의 오류 문제를 해결할 수 있는 방안을 제시하기 위해 수행되었다. 본 논문은 구매자에게 개인화된 치수를 제시할 수 있는 기계 학습 기반 추천 시스템의 구현 방안을 다루고 있다. 온라인 상거래로부터 발생된 구매 데이터를 사용하여 비음수 행렬 분해(NMF), 특이값 행렬 분해(SVD), k-최근접 이웃(KNN), 공동 클러스터링(Co-Clustering) 등 여러 검증된 협업 필터링 알고리즘을 훈련하였고, 이들 간에 성능을 비교하였다. 연구 결과, 비음수 행렬 분해 (NMF) 알고리즘이 다른 알고리즘들보다 뛰어난 성능을 보임을 확인할 수 있었다. 동일한 계정을 사용하는 여러 구매자가 포함되는 구매 데이터의 특성에도 불구하고, 제안 모형은 충분한 정확도를 보였다. 본 연구의 결과는 치수 선택의 오류로 인한 반품률을 감소하고 전자상거래 플랫폼에서의 고객 경험을 향상시키는 데 기여할 것으로 기대된다.
급격한 IT 환경의 변화에 따라 스마트 시대의 다양한 디지털 데이터가 폭발적으로 증가하고 있다. 이에 따라 다양한 영역에서 빅데이터를 활용한 서비스와 관련 기술들이 연구 및 개발되고 있다. 스마트교육에 있어서 빅데이터의 활용도는 학생, 교사, 학부모 등의 입장에서 많은 잠재력을 지니고 있다. 본 논문에서는 빅데이터에 대해 알아보고, 교육적 활용 시나리오에 대해서 살펴본다. 또한 빅데이터를 통한 맞춤형 교육 서비스를 도출하고, 이를 활용할 수 있는 방안을 제안하고자 한다. 이를 위해 교육용 빅데이터 처리 기술을 분석하고, 빅데이터 처리를 위한 시스템을 설계하고, 교육용 빅데이터를 활용하기 위해서 필요한 교육 서비스 방안을 제시하였다. 이러한 방안이 제대로 적용될 수 있는지 시범적으로 업무과 교육을 위한 클라우드 기반에서 동작하는 테스트 플랫폼을 구현하였다. 이를 교사들이 직접 사용해 보고 나서, 업무와 교육에서의 흥미도, 즐거움, 도구 사용 느낌, 긴장감이나 걱정, 자신감 등을 토대로 설문을 실시하고, 그 결과를 분석하여 교육용 빅데이터를 사용하기 위한 기반을 마련하고자 한다.
온라인 플랫폼을 통한 전자상거래 활성화에 따라 수많은 중소 판매상들은 수익성 향상을 위해 다양한 노력을 기울이고 있다. 이를 위해서는 프로모션이나 이벤트의 범위와 할인 수준, 품목 등에 대한 전략적 의사결정이 매우 중요하다. 본 연구는 중소 전자상거래 판매상들이 효과적인 프로모션 전략을 수립하기 위한 의사결정을 지원하기 위한 도구를 개발하고자 한다. 프로모션의 시행 여부를 판단하기 위해서는 프로모션에 의한 매출 증대 수준을 예측할 수 있어야 한다. 본 연구에서는 다양한 기계학습기법 중 MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, Linear Regression 모델을 통해 프로모션 시행 후의 매출변화를 예측하기 위한 모델을 개발하였다. 프로모션 데이터가 가진 복잡성과 품목의 특성이 뚜렷한 영향력을 가지는 것으로 확인되었으며, 여러 기법 중 Random Forest 모델과 MLP 모델이 가장 성능이 좋은 것으로 나타났다. 본 연구에서 개발된 방법을 통해 중소 전자상거래 판매상이 시장 변화에 능동적으로 대응하고, 데이터 기반 의사결정을 지원할 수 있을 것이다.
네트워크는 빠르게 성장하여 다중 도메인 복잡성을 유발하고 있다. 네트워크 트래픽 및 서비스의 다양성, 다양성 및 동적 특성은 향상된 오케스트레이션 및 관리 접근 방식을 필요로한다. 많은 표준 오케스트레이터와 네트워크 운영자가 E2E 슬라이스 오케스트레이션을 처리하기 위한 복잡성이 증가하고 있다. 또한 액세스, 에지, 전송 및 코어 네트워크를 포함하여 E2E 슬라이스 오케스트레이션과 관련된 여러 도메인이 각각 특정 문제를 가지고 있다. 따라서 멀티 도메인, 멀티 플랫폼 및 멀티 오퍼레이터 기반 네트워킹 환경을 수동으로 처리하려면 특정 전문가가 필요하며 이 접근 방식을 사용하면 런타임에 네트워크의 동적 변경을 처리할 수 없다 또한 이러한 복잡성을 처리하기위한 수동 접근 방식은 항상 오류가 발생하기 쉽고 지루한 일이다. 따라서 본 연구에서는 의도 기반 접근법을 사용하여 E2E 슬라이스 오케스트레이션을 처리하기 위한 자동화되고 추상화된 솔루션을 제안한다. 운영자로부터 도메인을 추상화하고 높은 수준의 의도 형태로 오케스트레이션 의도를 제공 할 수 있다. 또한 조정 된 리소스를 적극적으로 모니터링하고 머신 러닝을 사용하여 현재 모니터링 통계를 기반으로 시스템 상태 업데이트를 위한 향후 리소스 활용도를 예측한다. Closed-loop 자동화 E2E 네트워크 오케스트레이션 및 관리 시스템이 생성된다.
정보통신기술의 발달로 기존의 방식과는 달리 다양한 플랫폼에서 풀 브라우징 서비스를 통해 영상 콘텐츠의 제공이 가능하게 되었다. 이러한 패러다임의 변화는 소비자의 수용태도에 변화를 줄 뿐만 아니라, 영상 콘텐츠 제작 방식에도 변화를 요구한다. 하지만 영상 콘텐츠의 많은 부분이 모바일 플랫폼에 맞추어 적당히 변형되거나 사이즈 변환과 같은 기본적인 변환으로 수용자들에게 서비스되고 있다. 이것은 모바일 특성에 맞는 콘텐츠 유형 및 제작이 아닌 사용자에게 전달되는 방식으로의 변화만을 의미하므로, 모바일 콘텐츠 특성에 맞는 영상제작 및 편집과 같은 미학적인 면에서의 제작방식에 변화가 요구되어진다. HD영상의 전환으로 인하여 카메라 앵글, 구도, 조명등과 같이 제작 방식에 변화가 생긴 것과 마찬가지로 풀브라우징 서비스에 맞는 영상제작 기법으로 변화되어야 한다. 본 연구는 HD 영상제작에 따른 제작 방식 변화를 바탕으로 스마트 폰 시장 확장에 따른 모바일 기기에 적합한 동영상 편집기법에 대한 방향을 제안하고자 한다. 이를 위해, 현재 이러닝 제작에 사용되고 있는 화면 전환기법과 편집기법을 영상제작에 응용하거나, 종횡비의 변화, 다중화면 기법 등과 같은 다양한 편집기법을 이용하여 스마트 폰 플랫폼에 적합한 영상 변환 및 편집 방법을 제시하고자 한다. 이러한 새로운 시도들은 기존의 웹이 가지고 있었던 개방성, 적시성과 같은 특성들을 모바일에 적용하여 줌으로써 새로운 패러다임을 이끌고 가며 플랫폼으로써 자리를 잡아갈 것이다. 또한 개인 문화 영역으로 확대되어 단순 의사전달도구에서 벗어나 표현도구와 놀이도구로써 자리 잡을 것이다.
이 논문에서 우리는 국가연구데이터플랫폼 (DataON)의 분석서비스인 CANVAS (Creative ANalytics enVironment And System)를 제안한다. CANVAS는 연구데이터 분석 자원과 도구가 필요한 연구자들을 위한 개인화된 분석 클라우드 서비스이다. CANVAS는 마이크로서비스 아키텍쳐 기반으로 확장성을 고려하여 설계하였으며 전자정부프레임워크인 Spring 프레임워크, Kubernetes, JupyterLab 등의 오픈소스 소프트웨어를 이용하여 구축하였다. 구축된 시스템은 여러 사용자에게 개인화된 분석환경을 제공하며 고성능 클라우드 인프라 (CPU·GPU)를 활용하여 고속의 대용량 데이터 분석이 가능하다. 구체적으로 JupyterLab 이나 GUI 워크플로우 환경에서 데이터 모델링 및 처리가 가능하다. CANVAS는 DataON과 데이터가 공유되므로 사용자가 등록하거나 다운로드 받은 연구데이터는 CANVAS에서 바로 분석을 수행할 수 있다. 이로서 CANVAS는 DataON 사용자의 데이터 분석 편의성을 높이고 연구데이터 공유·활용 활성화에 기여한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.