• Title/Summary/Keyword: e-Learning performance

Search Result 577, Processing Time 0.033 seconds

Classification of Quality Attributes Using Two-dimensional Evaluation Table (수정된 이원평가표를 이용한 품질속성의 분류에 관한 연구)

  • Kim, Gwangpil;Song, Haegeun
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • For several decades, attribute classification methods using the asymmetrical relationship between an attribute performance and the satisfaction of that attribute have been explored by numerous researchers. In particular, the Kano model, which classifies quality attributes into 5 elements using simple questionnaire and two-dimensional evaluation table, has gained popularity: Attractive, One-dimensional, Must-be, Indifferent, and Reverse quality. As Kano's model is well accepted, many literatures have introduced categorization methods using the Kano's evaluation table at attribute level. However, they applied different terminologies and classification criteria and this causes confusion and misunderstanding. Therefore, a criterion for quality classification at attribute level is necessary. This study is aimed to suggest a new attribute classification method that sub-categorizes quality attributes using 5-point ordinal point and Kano's two-dimensional evaluation table through an extensive literature review. For this, the current study examines the intrinsic and extrinsic problems of the well-recognized Kano model that have been used for measuring customer satisfaction of products and services. For empirical study, the author conducted a comparative study between the results of Kano's model and the proposed method for an e-learning case (33 attributes). Results show that the proposed method is better in terms of ease of use and understanding of kano's results and this result will contribute to the further development of the attractive quality theory that enables to understand both the customers explicit and implicit needs.

Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index (시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계)

  • Lee, S.Y.;Sohn, S.Y.;Kim, C.E.;Lee, Y.B.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

An Efficient Disease Inspection Model for Untrained Crops Using VGG16 (VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델)

  • Jeong, Seok Bong;Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Early detection and classification of crop diseases play significant role to help farmers to reduce disease spread and to increase agricultural productivity. Recently, many researchers have used deep learning techniques like convolutional neural network (CNN) classifier for crop disease inspection with dataset of crop leaf images (e.g., PlantVillage dataset). These researches present over 90% of classification accuracy for crop diseases, but they have ability to detect only the pre-trained diseases. This paper proposes an efficient disease inspection CNN model for new crops not used in the pre-trained model. First, we present a benchmark crop disease classifier (CDC) for the crops in PlantVillage dataset using VGG16. Then we build a modified crop disease classifier (mCDC) to inspect diseases for untrained crops. The performance evaluation results show that the proposed model outperforms the benchmark classifier.

Embedded Mask Recognition System using YOLOv5 (YOLOv5를 이용한 임베디드 마스크 인식 시스템)

  • Ga-Won Yu;Eun-Sung Choi;Young-Jin Kang;Jeon, Young Jun;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.63-73
    • /
    • 2022
  • COVID-19 has continued from 2020 to the present, and many social changes have occurred. Wearing a mask has become mandatory, and if you do not wear a mask, you cannot use public facilities or restaurants. For this reason, most public facility entrances are equipped with a mask recognition system to check whether a mask is worn. However, it is unclear whether people who cover their mouths with a scarf or who do not wear a mask properly can be identified. In this study, we proposed an embedded mask recognition system using YOLOv5. Unlike the existing mask recognition system, it was able to distinguish not only whether a mask was worn, but also whether a mask was worn in various exceptional situations, such as a person with a scarf or a person covering their mouth with their hands, and showed excellent performance when mounted on the Nvida Jetson Nano Board.

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level (산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용)

  • Lee, Bora;Kim, Eunsook;Lim, Jong-Hwan;Kang, Minseok;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1117-1132
    • /
    • 2019
  • Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Introduction of Medical Simulation and the Experience of Computerized Simulation Program Used by $MicroSim^{(R)}$

  • Lee, Sam-Beom;Bang, Jae-Beum;SaKong, Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.148-153
    • /
    • 2007
  • Background : Computer- and web-based simulation methods help students develop problem solving and decision making skills. In addition, they provide reality based learning to the student clinical experience with immediate medical feedback as well as repetitive training, on-site reviews and case closure. Materials and Methods : Seventy-five third-year medical students participated in a two-week simulation program. The students selected four modules from eight modules as follows: airway and breathing 1, cardiac arrest 1, cardiac arrhythmia 1, and chest pain 1, and then selected the first case within each of the modules. After 2 weeks, a pass score was obtained and the data analyzed. The average pass score of over 70% was considered a passing grade for each module. If the student did not pass each module, there was no score (i.e., pass score was zero). In addition, when at least one of the four modules was zero, the student was not included in this study. Results : Seventy-five students participated in the simulation program. Nineteen students were excluded based on their performance. The final number of students studied was 56 students (74.7%). The average scores for each module 1 to 4 were 86.7%, 85.3%, 84.0%, and 84.0%, and the average obtained pass score was 88.6 for the four modules in all 56 students. Conclusion : Medical simulation enabled students to experience realistic patient situations as part of medical learning. However, it has not been incorporated into traditional educational methodology. Here we describe the introduction and the development of various simulation modules and technologies for medical education.

  • PDF

A study on frost prediction model using machine learning (머신러닝을 사용한 서리 예측 연구)

  • Kim, Hyojeoung;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.543-552
    • /
    • 2022
  • When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world's largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage. In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data. XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI.

Card Transaction Data-based Deep Tourism Recommendation Study (카드 데이터 기반 심층 관광 추천 연구)

  • Hong, Minsung;Kim, Taekyung;Chung, Namho
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.277-299
    • /
    • 2022
  • The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. Based on the transaction data, developing a smart service system becomes one of major goals in both tourism businesses and knowledge management system developer communities. However, the lack of rating scores, which is the basis of traditional recommendation techniques, makes it hard for system designers to evaluate a learning process. In addition, other auxiliary factors such as temporal, spatial, and demographic information are needed to increase the performance of a recommendation system; but, gathering those are not easy in the card transaction context. In this paper, we introduce CTDDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: i) Temporal preference Embedding (TE) represents tourist groups and services into vectors through Doc2Vec. And ii) Deep tourism Recommendation (DR) integrates the vectors and the auxiliary factors from a tourism RDF (resource description framework) through MLP (multi-layer perceptron) to provide services to tourist groups. In addition, we adopt RFM analysis from the field of knowledge management to generate explicit feedback (i.e., rating scores) used in the DR part. To evaluate CTDDTR, the card transactions data that happened over eight years on Jeju island is used. Experimental results demonstrate that the proposed method is more positive in effectiveness and efficacies.