The present study aims to examine how the roles of teacher and learners affect the repair patterns of both teacher's and learner's utterances in English as a second language (ESL) classroom discourse. The study analyzed beginning ESL classroom discourse and found that the structure of repair seems to be greatly influenced by the roles of participants in a second language classroom. The teacher's repair work was mainly characterized by self-repair. In contrast, learners' repair sequences were predominantly characterized by other-repair. More specifically, self-initiation by the learner of the trouble source was cooperatively completed by the teacher and the other learners. Other-initiated and other-completed repair was the most prevalent form in the current classroom data, which was carried out by the teacher in both modulated and unmodulated manners. When the trouble sources were mostly concerned with the learners' problems with linguistic competence and information presented in the textbook, other-repair took place in a modulated manner (i.e., recasting and prompting). On the other hand, when dealing with learners' errors with factual knowledge, other-repair was conducted in an unmodulated way (i.e., 'no' plus correction).
Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.
Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.
PURPOSES : This study develops various models that can estimate the pattern of road surface temperature changes using machine learning methods. METHODS : Both a thermal mapping system and weather forecast information were employed in order to collect data for developing the models. In previous studies, the authors defined road surface temperature data as a response, while vehicular ambient temperature, air temperature, and humidity were considered as predictors. In this research, two additional factors-road type and weather forecasts-were considered for the estimation of the road surface temperature change pattern. Finally, a total of six models for estimating the pattern of road surface temperature changes were developed using the MATLAB program, which provides the classification learner as a machine learning tool. RESULTS : Model 5 was considered the most superior owing to its high accuracy. It was seen that the accuracy of the model could increase when weather forecasts (e.g., Sky Status) were applied. A comparison between Models 4 and 5 showed that the influence of humidity on road surface temperature changes is negligible. CONCLUSIONS : Even though Models 4, 5, and 6 demonstrated the same performance in terms of average absolute error (AAE), Model 5 can be considered the optimal one from the point of view of accuracy.
인간이 지식을 얻는 대부분의 수단은, 눈으로 사물을 보거나 귀로 소리를 들어 입력되는 패턴.영상또는 소리.을 인식하고 그것을 지식으로 축적하는 연속적인 과정이다. 그중 문자인식은 시각정보를 통하여 문제를 인식하고 나아가 의미를 이해하는 인간의 능력을 컴퓨터로 실현하려는 패턴인식의 한분야로서 신경망을 사용한 패턴인식 시스템으로 발전되고 있다. 신경망의 학습에 있어서를 출력값을 재사용하는 신경망모델로는, 순환신경망( Recurrent Neural Netwrek)이 있다. 최근 들어서 이러한 순환신경망을 오프라인 필기체 문자와 같은 정적인 패턴의 분류에 적용하려는 연구가 많이 진행되고 있다. 그러나 이러한 방법들의 대부분든 오프라인 필기체문자와 같은 정적인 패턴의 분류에 있어서는 효과적으로 적용되지 않는다. 이에 본 연구에서는 오프라인 필기체문자와 같은 정적인 패턴을 효과적으로 분르하기 위한 새로운 형태의 순환신경망을 제안한다.본논문에서는 Jordan과 Elman Model 을 확정 결합한 새로운 J-E(Jordan-Elman) 신경망 모델을 사용하여 숫자 및 필기체 문자와 같은 정적인 패턴의 인식에서 기존의 신명망보다 성능이 향상되었음을 보여 준다.
본 연구는 고든의 음악 학습 이론을 스즈키 바이올린 교육에 통합하여 어린이들을 위한 바이올린 교수 학습모델을 만드는 것에 그 목적을 두고 있다. 스즈키 교육에 음악 학습 이론의 원리를 적용하는 주된 목적을 학생들의 오디에이션 개발에 두고 있으며, 스즈키 바이올린 교육과 고든의 음악 학습 이론 원리와의 관련성을 토대로, 스즈키 철학과 커리큘럼의 틀 안에서 오디에이션을 어떻게 가르칠 수 있는지 수업예시로 보여 줄 수 있도록 하였다. 이번 연구는 음악 학습 이론을 적용 할 수 있는 방법들 중 한 가지 가능성만을 제시하고 있으며, 스즈키 바이올린 교육에 음악 학습 이론을 체계적으로 적용하기 위해서는 제시된 수업 계획의 효과와 강점에 대한 추가 연구가 필요하며 스즈키 레퍼토리에서 사용 된 조성 및 리듬 패턴에 대한 보다 완벽한 안내서가 필요하다. 악기를 연주하는 학생들의 오디에이션 능력이 함양된다면, 기계적인 움직임이 아닌, 그들이 듣고, 연주하고, 작곡하는 음악에 대한 이해를 더 깊이 할 수 있을 것으로 기대된다.
최근에 기계학습을 적용한 연구들이 다양한 분야에서 뛰어난 성과를 보임에 따라, 제조업 분야에서도 학습기반의 디스패처는 학계와 산업계의 관심의 대상이 되고 있다. 디스패처의 성능을 향상시키기 위해서는 각 디스패치 의사결정을 자세히 평가할 수 있어야 한다. 그러나 기존의 제조라인에 대한 시각화기법에 대한 연구들은 제조라인의 성능지표나 이상치를 시각화하는데 주로 집중되었다. 본 논문은 디스패치 의사결정이 수행되는 시점에 선택 가능한 대안들과 함께 제조라인에 대한 다양한 정보를 제공하는 시각화시스템을 제안한다. 또한, 제안된 시스템은 설비의 유휴시간의 원인을 효과적으로 나타내며, 시간에 따른 성능지표의 변화도 효과적으로 표현하였다.
인터넷 학습 자료를 평가하는 그 동안의 연구들은 학습자료를 제작하는 프로그래머나 연구자의 입장에서 평가 문항들이 개발되어 자료의 신빙성이나 인터페이스의 설계 등을 위주로 평가항목이 개발되었다. 학습자나 사용자들의 편의성이나 활용성은 거의 고려가 되지 않은 상태였다. 본 연구는 위와 같은 문제점을 인식하고 해결하고자 현직교사들과 학생들을 위한 평가문항을 제작하여 실질적으로 사용자 입장에서의 평가도구를 개발하고자 하는 노력을 기울였다. 본 연구에서는 인터넷을 이용한 수업을 설계하고자 하는 사람들과 학생들이 인터넷 학습자료를 찾고자 할 때, 활용할 수 있는 웹 전자교과서 평가준거 80개를 마련하였다. 연구의 결과물은 앞으로 인터넷상에 수 없이 많이 만들어질 전자교과서들을 평가하게 될 것이며 평가된 웹 전자교과서는 학생들과 교사들에게 유의미하게 제공되어 학생들의 학습력을 신장시킬 것이다.
Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij(γ1) in any linear and non-linear feature spaces. We prove that Dij(γ1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij(γ1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.
로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.