The purpose of this study was to find research trends of smart learning. For this, we identified the research's characteristics such as the subject or keyword of research, method, data collection, and statistical analysis method. The 2,865 articles published from 1995 to 2013 were gathered from five Korean academic journals related to smart learning. Among them, research keyword, areas, research method, data collection method, and statistical analysis method were analyzed on 596 papers. The findings of this study were as follows: (a) Smart learning papers such keyword likes u-learning, m-learning, and smart-learning were emerging after 2006. Smart learning papers with ICT related topics were highly increased after 2000, but they were decreased after 2006. Smart learning papers with e-learning related keywords were steadily increased after 2000 through 2013. (b) The research field of deign had the highest portion in smart learning research, but managing had the lowest portion. (c) Development was mainly used as a research method. Both questionnaire and experiment were mainly used for collecting data methods. T-test and frequency analysis were mainly used as statistical analysis methods.
International Journal of Advanced Culture Technology
/
제11권4호
/
pp.286-294
/
2023
We studied learners' perceptions and learning styles of project research activities in the chemical field conducted by 54 science high school students. In a survey of students' perceptions of task research, positive responses were found in "internal motivation," "cooperation," "task solving," and "tenacity and immersion," and statistically significant differences were found in "self-directedness," "cooperation," and "tenacity and immersion" by year. The 'lower' group responded most positively in the 'cooperation' category, and the 'higher' group responded most positively in the 'task solving' category. As a result of investigating the learning styles of the students who conducted the task research, it was found in the order of assimilator, converger, accommodator, and diverger. The assimilators showed the characteristic of systematically and scientifically approaching the problem. Convergers were found to have excellent problem-solving and decision-making ability, are practical, and have experimental-based thinking characteristics. In this study, the characteristics of science high school students showed well in the results of the learning style performed.
말기암환자 관리를 위해서 전문인력 교육은 필수적이다. 정부에서는 암관리법을 통해 호스피스완화의료의 양적 확대를 기반으로 전문 인력을 양성하기 위해 제2기 암정복 10개년 계획에서 전문인력 확충계획을 발표하였다. 그간, 호스피스완화의료 전문인력 훈련을 위한 표준교육 과정과 의사/간호사 e-learning에 이어 이번 사회복지사 e-learning을 개발하여 운영하게 되었다. 호스피스완화의료 현장에서 사회복지사는 호스피스완화의료 대상자들의 심리 사회적 문제를 해결하는 중추적 역할을 수행해왔으며, 우리나라 호스피스완화의료가 정착되고 제도화되기까지 현장에서 전문가의 책임과 역할을 다해오고 있다. 하지만 그간 사회복지사 직종을 위한 체계적인 교육 과정이 없는 실정으로 사회복지 실천 지식과 기술을 충분히 습득하는 데 어려움이 있었다. 이번 호스피스완화의료 사회복지사 e-learning 과정 개발을 통해 말기암환자를 돌보는 사회복지사의 정체성과 전문성, 임상현장에서의 실천능력이 함양되고 교육 접근성이 향상될 것이며, 향후 보수교육 과정을 통한 지속적인 전문성 보장을 위한 교육제도가 제도적으로 도입되어 더욱 발전하길 기대한다.
The objective of this study is to identify the impacts of communication reinforcement on performance of learning in Web-PBL. Communication reinforcement is defined as the combination of information sharing and co-construction. As factors facilitating communication reinforcement, we propose learner's characteristics, task characteristics, and group characteristics. Learner's characteristics are collaboration-orientation, openness, holistic approach, and online community-orientation which reflects e-learning environment. Collaboration-oriented tasks as group projects were developed and given to groups with 5-6 members. The group characteristics are categorized into 'horizontal' and 'vertical', according to the patterns of communication between a group leader and members. To verify empirically the proposed research model, an experimental design was performed to learners who took on-line and off-line courses with group projects. We found important results as follows; First, field dependence has positive impacts on information sharing, and online community-orientation has positive impacts on co-construction. These results correspond with prior studies on relationship between field dependence and collaborative learning. Second, collaboration-oriented task directly impacts on information sharing, and indirectly affects co-construction, This result implicates that information sharing is pre-requisite of co-construction. Third, 'horizontal' was identified as a factor giving positive effects on information sharing and co-construction. This result implies that horizontal communication is very important to facilitate communication reinforcement.
인공지능(Artificial Intelligence)의 잠재력에 대한 기대로 여러 분야에서 이를 활용하고자 노력하고 있으며 교육 분야에서의 적용에 대한 관심 역시 높다. 교육에 있어서 인공지능 기술에 활용되는 기계학습(machine learning)과 딥러닝(deep learning)으로 스스로 학습하는 방법에 대한 관심을 가지게 되었으며 이러한 방식이 교육에 어떻게 활용될 수 있을 지와 인공지능을 어떻게 수학교육에 적용할 수 있을지에 대한 관심이 대두되고 있다. 이에 정보통신기술의 발달에 따른 수학교육의 변화를 고찰해 봄으로써 수학교육의 변화가 인공지능과 어떠한 연과성이 있는지를 살펴보는데 의의가 있다고 할 수 있다.
A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.
The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.
Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
Journal of Information Processing Systems
/
제18권2호
/
pp.245-257
/
2022
In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.
디자인 분야에서 온라인, 모바일을 통한 융합교육의 보급이 빠르게 확장되고 있다. 특히 증강현실 기술을 응용한 교육 프로그램 개발이 점차 널리 사용되고 있다. 이 글은 우선, 증강현실 기술의 현재 상태와 장점을 검토함으로써 교육 응용 분야에서 증강현실의 필요성을 강조한다. 둘째, 필자는 새로운 유형의 교육 시스템인 "AR + E" 교육 클라우드 플랫폼 시스템을 제안한다. 이 시스템은 일반 종이 교과서, 범용 휴대용 이동 단말기와 APP 등 3가지로 구성된다. 본 연구는 자동차 정비 전공 학생들을 대상으로 하여 "AR + E" 교육 시스템의 유용성 및 성능 실험을 통해 "AR + E" 시스템이 학습 효과에 미치는 영향 연구 조사하였다. "AR + E"시스템은 전통적인 학습 그룹과의 비교 실험을 통해 AR 대화식 미디어를 사용하여 학습자의 학업 성과를 향상시킬 뿐만 아니라, 재미와 참여도 및 연속성을 향상시키는 결과를 얻게 되었다. 끝으로, 사용자 경험, 행위와 기호에 대한 관찰과 인터뷰를 통해 AR 기반 교육 프로그램 소프트웨어를 디자인하고 개발하여 제안하고 있다.
본 연구에서는 수학 현장체험학습 프로그램이 학생들의 수학 학습에 대한 태도에 미치는 영향을 밝히고자 하였다. 이를 위해 2019년 제주목 관아에서 학생들이 직접 걸어 다니면서 체험할 수 있는 제주목 관아 매쓰투어(Math-Tour) 프로그램을 개발하였다. 프로그램에는 제주목 관아에서 볼 수 있는 여러 자연물과 인공물을 이용한 수학 문제를 제시하였다. 이후 제주시 A 중학교 학생들을 대상으로 체험하도록 하여 그 효과를 알아보았다. 매쓰투어에 참여한 학생들을 대상으로 사전·사후 수학 학습 태도 검사와 인터뷰를 실시하고, 소감문을 작성하도록 하여 이를 분석했다. 분석 결과, 수학 현장체험학습 프로그램인 제주목 관아 매쓰투어가 학생들의 수학 학습 태도 신장에 통계적으로 유의미한 영향을 미친다는 결론을 얻을 수 있었다. 이는 수학 현장학습 프로그램이 학생들의 수학 학습 태도를 개선하는데 유의미한 방법으로 활용될 수 있다는 것을 시사해 준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.