• Title/Summary/Keyword: e-Cubic model

Search Result 48, Processing Time 0.026 seconds

Simulation of Turbid Water According to Watershed Runoff and Withdrawal Type in a Constructing Reservoir (건설 예정인 댐에서 유역유출과 취수형태에 따른 탁수의 거동 예측)

  • Park, Jae-Chung;Choi, Jae-Hun;Song, Young-Il;Yu, Kyung-Mi;Kang, Bo-Seung;Song, Sang-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.247-257
    • /
    • 2010
  • Watershed runoff and turbid water dynamics were simulated in the Youngju Dam, being constructed. The runoff flow and suspended solids were simulated and then thermal stratification and turbid water current in the reservoir were predicted by HSPF and CE-QUAL-W2 model, respectively. Considering selective withdrawal, we hypothesized 3 withdrawal types from the dam, i.e. surface layer, middle layer and the lowest layer. The maximum concentration of SS was 400mg/L in reservoir and it was decreased by the withdrawal. The inflowed turbid water fell to 30 NTU after 12 days regardless of the withdrawal types, but the surface layer withdrawal was a better type at turbid water discharge than the others. In current environmental impact assessment(EIA), we concluded that runoff and reservoir water quality predicted by HSPF and CE-QUAL-W2 was desirable, and appropriate parameters were selected by continous monitoring after EIA.

A Numerical Study of Smoke Movement In Atrium Space (아트리움 공간에 있어서 연기 유동에 관한 수치해석적 연구)

  • 노재성;유홍선;정연태;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire model : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed frie field model based on Computational Fluid Dynamic (CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. For solving the liked set of velocity and pressure equation, the PISO algorithm, which strengthened the velocity-pressure coupling, was used. Since PISO algorithm is a time-marching procedure, computing time si very fast. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i.e Zone model and Field model predicted similar results for clear heights and the smoke layer temperature.

  • PDF

A Lattice Statistical Thermodynamic Study of Bilayer Amphiphile Molecules

  • Pak, Young-Shang;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.438-446
    • /
    • 1990
  • In order to elucidate conformational properties of bilayer semiflexible amphiphile molecules, we derive a expression of free energy separation with respect to bilayer width, and segment density profiles on the basis of cubic lattice model. Our result shows that at the moderate surface coverage region (i.e., ${\sigma}$ < 0.35), bilayer system tends to have thermodynamically favorable bilayer width corresponding to free energy minimum condition resulting from the major contribution of attractive interaction between chain segments. However such a favorable bilayer width do not occur in the region of high surface converage (i.e., ${\sigma}$> 0.4) where repulsive interaction between chain segments is considered to be dominant.

아트리움 공간에 있어서 화재에 의한 연기 유동에 관한 수치해석적 연구

  • 노재성;유홍선;정연태
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.43-48
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire modus: Zone model and Field model. The zone mode used is the CFAST(version 1.6) mode developed at the Building and Fire Research laboratories, NIST in the USA. The lied model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fro-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for Ire clear height and the smoke layer temperature.

  • PDF

Numerical Simulations of Using CIP Method for Dispersion of Pollutants around a Building (CIP 방법을 이용한 건물 주위의 오염물 확산에 대한 수치해석)

  • Hong, Bo-Young;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.723-728
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-e two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

Simultaneous water and energy saving of wet cooling towers, modeling for a sample building

  • Ataei, Abtin;Choi, Jun-Ki;Hamidzadeh, Zeinab;Bagheri, Navid
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.173-181
    • /
    • 2015
  • This article outlines a case study of water and energy savings in a typical building through a modelling process and analysis of simultaneous water-energy saving measures. Wet cooling towers are one of the most important equipments in buildings with a considerable amount of water and energy consumption. A variety of methods are provided to reduce water and energy consumption in these facilities. In this paper, thorough the modeling of a typical building, water and energy consumption are measured. Then, After application of modern methods known to be effective in saving water and energy, including the ozone treatment for cooling towers and shade installation for windows, i.e. fins and overhangs, the amount of water and energy saving are compared with the base case using the Simergy model. The annual water consumption of the building, by more than 50% reduction, has been reached to 500 cubic meters from 1024 cubic meters. The annual electric energy consumption has been decreased from 405,178 kWh to 340,944 kWh, which is about 16%. After modeling, monthly peak of electrical energy consumption of 49,428 has dropped to 40,562 kWh. The reduction of 18% in the monthly peak can largely reduce the expenses of electricity consumption at peak.

Statistical Modelling and Forecasting of Cervix Cancer Cases in Radiation Oncology Treatment: A Hospital Based Study from Western Nepal

  • Sathian, Brijesh;Fazil, Abul;Sreedharan, Jayadevan;Pant, Sadip;Kakria, Anjali;Sharan, Krishna;Rajesh, E.;Vishrutha, K.V.;Shetty, Soumya B.;Shahnavaz, Shameema;Rao, Jyothi H.;Marakala, Vijaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2097-2100
    • /
    • 2013
  • Background: To estimate the numbers and trends in cervix cancer cases visiting the Radiotherapy Department at Manipal Teaching Hospital, Pokhara, Nepal, statistical modelling from retrospective data was applied. Materials and Methods: A retrospective study was carried out on data for a total of 159 patients treated for cervix cancer at Manipal Teaching Hospital, Pokhara, Nepal, between $28^{th}$ September 2000 and $31^{st}$ December 2008. Theoretical statistics were used for statistical modelling and forecasting. Results: Using curve fitting method, Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power and Exponential growth models were validated. Including the constant term, none of the models fit the data well. Excluding the constant term, the cubic model demonstrated the best fit, with $R^2$=0.871 (p=0.004). In 2008, the observed and estimated numbers of cases were same (12). According to our model, 273 patients with cervical cancer are expected to visit the hospital in 2015. Conclusions: Our data predict a significant increase in cervical cancer cases in this region in the near future. This observation suggests the need for more focus and resource allocation on cervical cancer screening and treatment.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Optimization of HPLC-tandem mass spectrometry for chlortetracycline using response surface analysis

  • Bae, Hyokwan;Jung, Hee-Suk;Jung, Jin-Young
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.309-315
    • /
    • 2018
  • Chlortetracycline (CTC) is one of the most important compounds in antibiotic production, and its distribution has been widely investigated due to health and ecological concerns. This study presents systematic approach to optimize the high-performance liquid chromatography-tandem mass spectrometry for analyzing CTC in a multiple reaction monitoring mode ($479{\rightarrow}462m/z$). One-factor-at-a-time (OFAT) test with response surface analysis (RSA) was used as optimization strategy. In OFAT tests, the fragmentor voltage, collision energy, and ratio of acetonitrile in the mobile phase were selected as major factors for RSA. The experimental conditions were determined using a composite in cube design (CCD) to maximize the peak area. As a result, the partial cubic model precisely predicted the peak area response with high statistical significance. In the model, the (solvent composition) and (collision $energy^2$) terms were statistically significant at the 0.1 ${\alpha}$-level, while the two-way interactions of the independent variables were negligible. By analyzing the model equation, the optimum conditions were derived as 114.9 V, 15.7 eV, and 70.9% for the fragmentor voltage, collision energy, and solvent composition, respectively. The RSA, coupled with the CCD, offered a comprehensive understanding of the peak area that responds to changes in experimental conditions.