• 제목/요약/키워드: dynamic torsion test

Search Result 50, Processing Time 0.029 seconds

High Strain Rate Deformation Behavior of 5083 Aluminum Alloy Prepared via Equal Channel Angular Extrusion (ECAE 전단 가공된 5083 알루미늄 합금의 고변형률 변형거동)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.397-405
    • /
    • 2009
  • The high strain rate deformation behavior of ultra-fine grained 5083 aluminum alloys prepared via equal channel angular (ECA) extrusion was investigated in this study. The microstructure of ECA extruded specimens consisted of ultra-fine grains, and contained a considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. According to the dynamic torsion test results, the maximum shear stress and fracture shear strain of the route A (no rotation) specimen were lower than those of route C ($180^{\circ}$ rotation) specimen since that adiabatic shear bands of $100{\mu}m$ in width were formed in the route A specimen. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity associated with ECA operations.

Analysis of Durability of Torsion Beam Axle Using Modal Stress Recovery Method (모달 응력 회복법(Modal Stress Recovery)을 이용한 Torsion Beam Axle 내구해석)

  • Ko, Jun-Bok;Lim, Young-Hoon;Lee, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1339-1344
    • /
    • 2010
  • MSM (Modal Superposition Method) is a technique for analyzing structural durability by taking the vibration characteristics into consideration. In this paper, MSR (Modal Stress Recovery) method, which is similar to MSM, was reviewed to check its validity as a durability analysis method. The MSR method directly calculates the modal displacement time history in multibody dynamics analysis; as a result, the total analysis time is shorter than that of MSM method. We conduct durability analysis using the MSR method and a durability test of a torsion beam axle that is affected by various road loads within the natural frequency of the beam axle. The analysis results for critical location and durability were in good agreement with the respective test results. Therefore, durability analysis using the MSR method is effective in predicting the durability of the structures of various dynamic systems.

Development of Mach Small-scaled Composite Blade for Helicopter Articulated Rotor System (헬리콥터 관절형 로터 시스템용 마하 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Song, Keun-Woong;Kim, Joune-Ho;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.57-60
    • /
    • 2003
  • This Paper contains the development procedure of Mach small-scaled composite rotor blade for helicopter articulated rotor system. This mach small-scaled composite blade design is conducted by using CORDAS program developed by KARI. The Dynamic analysis for an articulated rotor system with this blade is conducted by using FLIGHTLAB which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. For small-scaled rotor test, strain gauges were embedded in composite blade spar to obtain bending & torsion strain value. To verify sectional properties of a blade, the bench test is accomplished. After comparing a designed data and tested data, Dynamic Calculation was repeated using tested data. Through this research, experiences of mach small-scaled composite blade development were accumulated and will be applied to the related research field.

  • PDF

High Temperature Deformation Characteristics (STS 430 고온변형 특성에 관한 연구)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.179-182
    • /
    • 2000
  • The dynamic softening behavior of type 430 ferritic stainless steel could be characterized by the hot torsion test in the temperature range of 900-110$0^{\circ}C$ and the strain rate range of 0.05-5/sec. It is found that the continuous dynamic recrystallization (CDRX) was a major dynamic softening mechanism. The effects of process variables strain ($\varepsilon$) stain rate($\varepsilon$)and temperature (T) on CDRX could be individually established from the analysis of flow stress curves and microstructure. The effect of CDRX individually established from the analysis of flow stress curves and microstructure. The effect of CDRX increased with increasing strain rate and decreasing temperature in continuous deformation. The multipass deformation processes were performed with 10 pass deformations. The CDRX effect occurred in multipass deformatioon. The grain refinement could be achieved from multipass deformation The grain refinement increased with increasing strain rate and decreasing temperature. Also the CDRX in multipass deformation was affected by interpass time and pass strain. The total strain was to be found key parameter to occur CDRX.

  • PDF

Aeroelastic Stability Analysis of Hingeless Rotor Blades with Composite Flexures

  • Kim, Seung-Jo;Kim, Ki-Tae;Jung, Sung-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.512-521
    • /
    • 2002
  • The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite flexures in hovering flight has been investigated by using the finite element method. The quasisteady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting on the blade. The governing differential equations of motion undergoing moderately large displacements and rotations are derived using the Hamilton's principle. The flexures used in the present model are composed of two composite plates which are rigidly attached together. The lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines the St. Versant torsion and the Vlasov torsion is developed to describe the twist behavior of the composite flexure. Numerical simulations are carried out to correlate the present results with experimental test data and also to identify the effects of structural couplings of the composite flexures on the aeroelastic stability of the blade. The prediction results agree well with other experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag couplings on the stability behavior of the composite blades are also investigated.

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

Effects of Moisture Content on Non-Fracture Dynamic Properties and Fracture Quality of Pacific Whiting Surimi

  • Esturk, Okan;Park, Jae-Won;Raik, Moo-Yeol;Kim, Byung-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.856-859
    • /
    • 2006
  • The effects of moisture content on non-fracture dynamic properties and fracture gel quality of Pacific whiting surimi were investigated to determine their relationships. Surimi samples were tested at various moisture contents (75, 78, and 81 %). Torsion test showed that shear stress decreased rapidly and strain values decreased gradually as moisture concentration increased. Dynamic storage modulus (G') also decreased as moisture content increased. A strong positive correlation ($R^2=0.90$ to 0.99) was found between the G' measured at temperatures between 10 and $45^{\circ}C$ and fracture stress values. The results indicate that dynamic rheological measurements could be used as a tool for early gel quality assessment.

A Study on Meta-Dynamic Recrystallization of 304 Stainless Steels (304 스테인레스강의 준동적재결정에 관한 연구)

  • 한형기;조상현;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.42-52
    • /
    • 2001
  • The static softening mechanisms of 304 stainless steel were studied by hot torsion test. The interrupted deformation tests were performed In the range of 900~$1100^{\circ}C$ and 5.0$\times$$10^{-2}$- 5.0$\times$$10^0$/sec. The metadynamic recrystallization (MDRX) could be distinguished from the static recrystallization (SRX). Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. To the exact prediction of MDRX, the MDRX parameter, which could be simultaneously estimated by the interpass time and Zener-Hollomon parameter, was developed. The time lot 50% MDRX, $t_{0.5} was modeled using the deformation parameters : $t_{0.5} = 1.33\times10^{-11}$ $\.\varepsilon^{-0.41}$ D exp(230.3kJ/mol/RT) and the predicted value was very correspondent with the measurement. It was found that the static parameters such as interpass time can control the dynamic states in the several successive deformation process.

  • PDF

High Temperature Plastic Deformation Condition of Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건에 관한 연구)

  • 김성일;정태성;유연철;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.76-79
    • /
    • 1998
  • High temperature plastic deformation behavior of Al 6061 alloy was characterized by hot torsion test. The Al 6061 alloy deformed continuously in the temperature range of 400∼550$^{\circ}C$, and strain rate range of 0.05∼5/sec. The softening mechanism of Al 6061 alloy was dynamic recrystallization and identified by hyperbolic sine law and zener-Hollmon parameter. The evolution of grain size and deformation resistance were calculated by the relationships of deformation variables.

  • PDF

Prediction for the Dynamically Recrystallized Grain Size of AISI 304 (AISI 304 스테인리스강의 동적 재결정립 예측)

  • Kim S. I.;Yoo Y. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.143-146
    • /
    • 2001
  • The evolution of dynamic recrystallization (DRX) was studied with torsion test for AISI 304 stainless steel in the temperature range of $900-1000^{\circ}C$ and strain rate range of 0.05-5/sec. The evolution of DRX was investigated with microstructural analysis and change of flow stress curve slope. The investigation of serrated grain boundaries using electron back scattered diffraction (EBSD) analysis indicated that the nucleated new DRX grain size was similar to the size of bulging part. Before the steady state, the dynamically recrystallizing grains do not remain a constant size and gradually grow to the size of fully DRX grain at steady state. The calculation of grain size was based on $X_{DRX}$ and the assumption, which the nucleated DRX grains are growing to the steady state, continuously. It was found that the calculated results agreed with the microstructure of the alloy.

  • PDF