• 제목/요약/키워드: dynamic tests

Search Result 2,298, Processing Time 0.029 seconds

A Study on the Dynamic Characteristics on the Test Line for Korean High Speed Train (한국형 고속전철의 주행진동 특성에 관한 연구)

  • 김영국;김석원;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site of Korea High Speed Rail Construction Authority (KHRC). since it was developed as G7 Project Plan In 2002. This paper introduces the dynamic test devices in KHST and shows the comparison between the results of test and theoretical computing results which derive from the new model for KHST dynamic behavior. Previous computer simulation model for KHST was developed to review wether the vehicle system was satisfied with the dynamic performance requirements during the design procedure. But It should be applied the results of the parts test for suspension elements in order to compare between the results of computation and real test. Using VAMPIRE Program made by AEA Technology in UK. the new model also was modified. This paper shows that the static wheel loads calculated from new model is similar to test results. For test on high speed line, we prepared the test devices for evaluating the dynamic performances. which was consisted of the accelerometers( based on Kisler Co.) and the data aquisition systems (based on National instrument Co.), and test program coded by LabView 6i program. These lest devices and programs are flexible to extension the channels for adding sensors and connect to the ethernet network. The acceleration of car bodies, bogie frames and axle boxes were compared between the results of computation and test at 150km/. This paper shows that the results of test were high in high frequency band range but similar frequency band range. It might be considered that these differences were caused by the test which did not performed at constant speed for comparison analysis. Also. It will be able to understand the differences and make better results through a lot of tests planed in future.

  • PDF

Bearing Capacity of Pavement Foundation by Waste Lime Material using the Dynamic Cone Pentrometer (동적 콘관입시험기를 이용한 폐석회 혼합 도로노반 성토체의 현장 지지력 평가)

  • Kim, Young-Seok;Hong, Seung-Seo;Bae, Gyu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.927-935
    • /
    • 2011
  • In-situ California Bearing Ratio(CBR) test has been widely used for evaluating the subgrade condition in pavements. However, because the in-situ CBR test is expensive and takes time for operation, it is difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) has been often utilized for estimating the subgrade strength in the field. The purpose of this paper is to determine the relationship between CBR value and DCP index of the embankment constructed with mixtures of soil and waste lime. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this field measurement, the geotechnical tests such as field water content, field density, field CBR test, and dynamic cone penetration test were conducted.

Development of Cable Excitation System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play on important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally, it is necessary to exactly estimate the dynamic characteristics of the existing cables. To achieve more reliable dynamic properties of stay cables, precise excitations inducing forced vibration are needed. Therefore, in this study, a cable excitation system(exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived, Using the cable exciter, sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Development and Performance Evaluation of In-situ Dynamic Stiffness Analyzer (원위치 동적강성 분석기의 개발 및 성능평가)

  • Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.41-50
    • /
    • 2019
  • Stiffness characteristic of subgrade is one of the most important aspects for the design and evaluation of pavement and railway. However, adequate field testing methods for evaluating the stiffness characteristics of the subgrade have not been developed yet. In this study, an in-situ dynamic stiffness analyzer (IDSA) is developed to evaluate the characteristics of subgrade stiffness along the depth, and its performance is evaluated in elastic materials and a compacted soil. The IDSA consists of a falling hammer system, a connecting rod, and a tip module. Four strain gauges and an accelerometer are installed at the tip of the rod to analyze the dynamic response of the tip generated by the drop of hammer. Based on the Boussinesq's method, the stiffness and Young's modulus of the specimens can be calculated. The performance of IDSA was tested on three elastic materials with different hardness and a compacted soil. For the repeatability of test performance, the dynamic signals for force and displacement of the tip are averaged from the hammer impact tests performed five times at the same drop height. The experimental results show that the peak force, peak displacement, and the duration depend on the hardness of the elastic materials. After calculating the stiffness and elastic modulus, it is revealed that as the drop height of hammer increases, the stiffness and elastic moduli of MC nylon and the compacted soil rapidly increase, while those of urethanes less increase.

The Immediate Effects of Dynamic Stretching and Static Stretching Using a Wedge Board on the Balance Ability and Jump Function of Healthy Adult

  • Ji, Ye-ri;Hong, Yoo-sun;Lee, Dongyeop;Hong, Ji-Heon;Yu, Jae-Ho;Kim, Jin-Seop;Kim, Seong-gil
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.286-291
    • /
    • 2021
  • Purpose: This study aims to measure the improvement of balanced ability and rapid response of 30 healthy adults by performing dynamic stretching, static stretching, and sargent jump. Methods: The sample 30 peoples without any musculoskeletal disease who volunteered to be the subject of the study. We measured all subjects on following metrics to evaluate the function and stability under the normal condition, with dynamic stretching (DS) group, static stretching (SS) group: vertical jump height and reaching distance Anterior, Posteromedial, Posterolateral and NO (Normal eye open), NC (Normal eye close), PO (Pillow with eye open), and PC (Pillow with close eye) were evaluated. All measures were analyzed using independent t-test and One-way repeated Anova. Results: There was a significant increase in SJH (Sargent jump) in both groups (p<0.05). In Y-balance test, there was a significant increase in both groups except for the ANT (Anterior) direction, and there was a significant increase only in the SS group in the ANT (Anterior) direction (p<0.05). There was no significant difference between the DS group and the SS group (p>0.05). There was no significant improvement in ST (Stability Index) and WDI (Weight Distribution Index) in both groups (p>0.05). Conclusion: Both DS and SS showed significant improvement in SJH and Y-balance tests, which are dynamic functions, but had no significant effect on static balance ability.

Effects of dynamic taping on shoulder joint proprioception

  • Park, So-Young;Kim, Min-Ji;Seol, So-Eun;Hwang, Chan;Hong, Ji-Su;Kim, Ho;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.4
    • /
    • pp.269-274
    • /
    • 2020
  • Objective: There are many cases of applying various taping methods to prevent muscle damage and to assist with movement. The purpose of this study was to investigate and to compare the effects of dynamic taping on joint position sense and to find out the difference in error values during various degrees of shoulder flexion. Design: Cross-sectional study. Methods: A total of 20 subjects participated in this study with a randomized cross-over design. The order of taping was adjusted by randomly proceeding with dynamic taping, sham taping, and no taping. After the taping, the proprioception of the shoulder joint was evaluated. The evaluation of proprioceptive sensation was performed by evaluating joint position sensation. The sequence was adjusted by randomly performing joint position tests at each shoulder flexion of 50, 90, and 110 degrees. All angles were repeated 3 times. Results: There was a significant difference between dynamic taping and no taping in 50 degrees of shoulder flexion. There was a significant difference between sham taping and no taping in 90 degrees of shoulder flexion (p<0.05). No significant difference was found in 110 degrees of shoulder flexion. Conclusions: In this study, it was confirmed that dynamic taping is effective in improving the joint position sense in 50 degrees of shoulder flexion. In the future, it is expected that further studies will be conducted on patients with shoulder dysfunction with decreased proprioception.

Effects of Floss Bands on Ankle Joint Range of Motion and Balance Ability

  • Moon, Byoung-Hyoun;Kim, Ji-Won
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.274-281
    • /
    • 2022
  • Background: The range of motion (ROM) and balance ability of the ankle joint affect the stability of the ankle and prevent injuries or hurts from falling. In the clinical tests conducted recently, the floss band is widely used to enhance the range of joint motion and exercise performance, and there are many studies that have applied it to ankle joint increasing dorsi flexion (DF) angle. Objects: This study compared the effects on the range of ankle motion and static/dynamic balance ability of the ankle through three conditions (before floss band intervention, after floss band intervention, and after active exercise intervention) for adults. Methods: One intervention between floss band and active exercise was applied randomly and another intervention was applied the next day. After each intervention, the ROM of the ankle joints and the static balance was checked by measuring conducting one leg test. And the dynamic balance was checked by conducting a Y-balance test. Results: In the case of DF, the range of joint motion showed a significant increase after floss band intervention compared to before floss band intervention (p < 0.05). Static balance ability showed a significant increase after the intervention of floss band and active exercise compared to before the intervention of floss band (p < 0.05). The dynamic balance ability showed a significant increase after the intervention of the floss band compared to before intervention of the floss band and after active exercise intervention (p < 0.05). Conclusion: Based on these results, it was confirmed that the application of floss band to the ankle joint increases DF and improves the static and dynamic balance ability. Based on this fact, we propose the application of a floss band as an intervention method to improve the ROM of the ankle joint and improve the stability of the ankle in clinical field.

Development and Validation of Dynamic Model for KC-100 UAS (KC-100 항공기 무인화를 위한 운동모델 구축 및 검증)

  • Seong Hyeon Kim;Ji Bon Kim;Jung Hoon Lee;Eung Tai Kim;Byoung Soo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.79-87
    • /
    • 2023
  • To design a control law of an aircraft, an accurate aircraft dynamic model is required. To obtain an aerodynamic database (DB) to build a dynamic model, a large number of wind tunnel tests are typically required. However, when flight test data of target aircraft exist such as in the process of unmanned conversion of a manned aircraft, an aircraft dynamic model can be obtained through a parameter estimation method and a DB tuning procedure. This paper describes a nonlinear model construction process and a verification method for KC-100 OPV aircraft. Flight data compatibility analysis was performed to determine suitability of the estimation method application. Linear model estimation was performed using the maximum likelihood estimation method. Results of aerodynamic DB tuning process and verification applying the FFS standard to the nonlinear model constructed are presented.