• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.038 seconds

Integration of T-Search and Dynamic-Window Concept for Accelerated Searching Speed in Delaunay Triangulation (Delaunay Triangulation의 폴리건 검색속도 개선을 위한 T-Search와 Dynamic-Window 개념의 결합)

  • Kang, Hyun-Joo;Yoon, Sug-Joon;Kong, Ji-Young;Kim, Kang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.681-687
    • /
    • 2003
  • Terrain surfaces have to be modeled in very detail and wheel-surface contacting geometry must be well defined in order to obtain proper ground-reaction and friction forces fur realistic simulation of off-road vehicles. Delaunay triangulation is one of the most widely used methods in modeling 3-dimensional terrain surfaces, and the T-search is a relevant algorithm for searching resulting triangular polygons. The T-search method searches polygons in a successive order and may not allow real-time computation of off-road vehicle dynamics if the terrain is modeled with many polygons, depending on the computer performance used in the simulation. The dynamic T-search, which is proposed in this paper, combines conventional T-search and the concept of the dynmaic-window search which uses reduced searching windows or sets of triangular surface polygons at each frame by taking advantage of the information regarding dynamic charactereistics of a simulated vehicle. Numerical tests show improvement of searching speeds by about 5% for randomly distributed triangles. For continuous search following a vehicle path, which occurs in actual vehicle simulation, the searching speed becomes 4 times faster.

Dynamic Material Test of Sinter-Forged Cu-Cr Alloy and Application to the Impact Characteristics of Vacuum Interrupter (구리-크롬 합금의 조성비에 따른 동적실험 및 진공 인터럽터 충격특성에의 적용)

  • Song, Jung-Han;Lim, Ji-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.447-452
    • /
    • 2004
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is obtained from the split Hopkinson pressure bar test. Experimental results from both quasi-static and dynamic compressive tests are interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the amount of chromium content.

  • PDF

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

Measurement of Static and Dynamic Stress and Motion Characteristics of Excavators (굴삭기의 정적/동적 응력 및 구동 특성 계측)

  • Kim, Gyu-Sung;Choung, Joon-Mo;Jang, Young-Sik;Choe, Ick-Hung;Lee, Joon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.473-478
    • /
    • 2003
  • This paper presents static and dynamic measurement of the stress and motion characteristics for crawler type excavators. Eight scenarios were prepared for static measurement based on two extreme digging positions, maximum digging reach position and maximum digging force position. The measured items for static motion included stress, cylinder pressure, cylinder stroke and digging force. The measured static stresses showed that asymmetric digging force acting on a bucket induced higher stress level than symmetric one. The measured static pressures and digging forces also agreed with design pressures and design digging forces, respectively. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of each cylinder and actual digging motion. The measured items for dynamic motion were stroke and pressure of each cylinder, stresses on the working device and acceleration on the upper plate of an arm. The measured data showed that the natural frequency of the excavator highly depended on the hydraulic stiffness of cylinders. Digging motion tests revealed that digging motion was closer to static motion rather than dynamic one.

  • PDF

Performance evaluation of suspended ceiling systems using shake table test

  • Ozcelik, Ozgur;Misir, Ibrahim S.;Saridogan, Serhan
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.121-142
    • /
    • 2016
  • The national standard being used in Turkey for suspended ceiling systems (SCS) regulates material and dimensional properties but does not contain regulations regarding installation instructions which cause substandard applications of SCSs in practice. The lack of installation instructions would potentially affect the dynamic performance of these systems. Also, the vast majority of these systems are manufactured using substandard low-quality materials, and this will inevitably increase SCS related damages during earthquakes. The experimental work presented here focuses on the issue of dynamic performance of SCSs with different types of carrier systems (lay-on and clip-in systems), different weight conditions, and material-workmanship qualities. Moreover, the effects of auxiliary fastening elements, so called seismic perimeter clips, in improving the dynamic performance of SCSs were experimentally investigated. Results show that clip-in ceiling system performs better than lay-on system regardless of material and workmanship qualities. On the other hand, the quality aspect becomes the most important parameter in affecting the dynamic performance of lay-on type systems as opposed to tile weights and usage of perimeter clips. When high quality system is used, tile weight does not change the performance of lay-on system, however in poor quality system, tile weight becomes an important factor where heavier tiles considerably decrease the performance level. Perimeter clips marginally increase the dynamic performance of lay-on ceiling system, but it has no effect on the clip-in ceiling system under the shaking levels considered.

The Estimation of Bearing Capacity of Auger-drilled Pile in Sand-Gravel by Dynamic Load Test (동재하시험에 의한 모래자갈층에 근입된 매입말뚝의 지지력 산정)

  • Choi, Ki-Chul;Moon, Yu-Ho;Oh, Won-Keun;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1819-1826
    • /
    • 2007
  • This study results of performed field load test in order to estimate the best pile length assessment and allowable bearing capacity of the pile foundation. End of initial driving(EOID) and restrike of pile dynamic loading tests were performed to calculate allowable bearing capacity of the experimental pile side and results were compared with the allowable bearing capacity estimated by theory. The results of allowable bearing capacity by EOID test is $1.08{\sim}1.21$ in the range of compared to the capacity calculated by the Structure Foundation Design Criterion. Allowable bearing Capacity by restrike of pile dynamic loading test is $1.32{\sim}1.48$ in the range of compared to the Structure Foundation Design Criterion. The Foundation Design Criterion underestimated the pile capacity. If the bearing capacity calculated by Structure Foundation Design Criterion is 100, EOID of pile dynamic loading test is 116, restrike of pile dynamic loading test is 138 for 20m pile used in this experimental.

  • PDF

Identification of Dynamic Characteristics of Squeeze Film Damper Using Active Magnetic Bearing System as an Exciter (자기 베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동특성 계수 규명)

  • 김근주;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.508-516
    • /
    • 2003
  • The dynamic characteristics of an ell-lubricated, short squeeze film damper (SFD) with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove, and identified experimentally using an Active Magnetic Bearing (AMB) system as an exciter. In order to get the theoretical solution, the fluid film forces of the grooved SFD are analytically derived so that the dynamic coefficients of the SFD can be expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using an AMB as an exciter is proposed. As an exciter. the AMB represents a mechatronic device to levitate and position the test Journal without any mechanical contact, to generate relative motions of the Journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with various values of clearance, which Is one of the most important design parameters. in order to investigate its effect on the dynamic characteristics and the performance of the SFD. Damping and Inertia coefficients of the SFD that are experimentally Identified are compared with the analytical results to demonstrate the effectiveness of the applied analysis. It Is also shown that the AMB is an ideal device for tests of SFDs.

Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties (동적 물성치를 고려한 V.I. 충격인자의 영향 분석)

  • Lim, J.H.;Song, J.H.;Huh, H.;Park, W.J.;Oh, I.S.;Choe, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

Path Prediction-based Dynamic Data Sharing in Network Virtual Environment (네트워크 가상환경에서 경로예측에 의한 동적 데이터 공유)

  • Song, Sun-Hee;Ra, Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.956-963
    • /
    • 2006
  • This research studies multi participant consistency and dynamic data shared through 3D scenes in virtual network environments. In a distributed virtual environment of client-server structure, consistency is maintained by the static information exchange; as jerks occur by packet delay when updating messages of dynamic data exchanges are broadcasted frequence, the network bottleneck is reduced by predicting the movement path by using the Dead-reckoning algorithm. In Dynamic data path prediction, the tests the location prediction error between Dead-reckoning convergence interval and error of prediction and actual condition one time above threshold it interpolates a previously location. The shared dynamic data of the 3D virtual environment is implementation using the VRML EAI.