• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.033 seconds

A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider

  • Lee, Sungook;Choi, Hyeung-Sik;Kim, Joon-Young;Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.892-901
    • /
    • 2020
  • We used a numerical method to estimate the hydrodynamic maneuvering derivatives for the heave-pitch coupling motion of an underwater glider. It is very important to assess the hydrodynamic maneuvering characteristics of a specific hull form of an underwater glider in the initial design stages. Although model tests are the best way to obtain the derivatives, numerical methods such as the Reynolds-averaged Navier-Stokes (RANS) method are used to save time and cost. The RANS method is widely used to estimate the maneuvering performance of surface-piercing marine vehicles, such as tankers and container ships. However, it is rarely applied to evaluate the maneuvering performance of underwater vehicles such as gliders. This paper presents numerical studies for typical experiments such as static drift and Planar Motion Mechanism (PMM) to estimate the hydrodynamic maneuvering derivatives for a Ray-type Underwater Glider (RUG). A validation study was first performed on a manta-type Unmanned Undersea Vehicle (UUV), and the Computational Fluid Dynamics (CFD) results were compared with a model test that was conducted at the Circular Water Channel (CWC) in Korea Maritime and Ocean University. Two different RANS solvers were used (Star-CCM+ and OpenFOAM), and the results were compared. The RUG's derivatives with both static drift and dynamic PMM (pure heave and pure pitch) are presented.

Experimental research on the effect of water-rock interaction in filling media of fault structure

  • Faxu, Dong;Zhang, Peng;Sun, Wenbin;Zhou, Shaoliang;Kong, Lingjun
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-478
    • /
    • 2021
  • Water damage is one of the five disasters that affect the safety of coal mine production. The erosion of rocks by water is a very important link in the process of water inrush induced by fault activation. Through the observation and experiment of fault filling samples, according to the existing rock classification standards, fault sediments are divided into breccia, dynamic metamorphic schist and mudstone. Similar materials are developed with the characteristics of particle size distribution, cementation strength and water rationality, and then relevant tests and analyses are carried out. The experimental results show that the water-rock interaction mainly reduces the compressive strength, mechanical strength, cohesion and friction Angle of similar materials, and cracks or deformations are easy to occur under uniaxial load, which may be an important process of water inrush induced by fault activation. Mechanical experiment of similar material specimen can not only save time and cost of large scale experiment, but also master the direction and method of the experiment. The research provides a new idea for the failure process of rock structure in fault activation water inrush.

Estimation of Dynamic Characteristics Before and After Restoration of the Stone Cultural Heritage by Vibration Measurement (진동 측정에 의한 석조문화재 복원 공사 전·후의 동특성 추정)

  • Choi, Jae-Sung;Cho, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2021
  • Naju Seokdanggan, Treasure No. 49, was dismantled and reconstructed due to poor performance. During construction, the crack area was reinforced and the inclination was improved. It is necessary to analyze the stiffness changes before and after the reconstruction of these cultural properties, and to establish a database of related information. In addition, there is a need for research on a scientific non-destructive testing method capable of predicting or evaluating the reinforcing effect. In this study, a simple equation for estimating the overall stiffness of the structural system was derived from information on the elasticity coefficient and the natural frequency measured by vibration tests before and after reconstruction work, and the applicability of the equation was examined. If the stiffness of important cultural properties is regularly investigated by the suggested method, it is judged that it can be used as data to estimate the time when structural safety diagnosis is necessary or when repair or reinforcement is necessary.

Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater

  • Wang, Wan-Xia;Zhao, Dong-Lin;Wu, Chang-Nian;Chen, Yan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.345-352
    • /
    • 2021
  • In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni-GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67 %. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.

Experimental Analysis of Liquefaction Resistance Characteristics of Silica Sand Used in Earthquake Simulation Tests (국내 지진 모의시험에 이용되는 규사의 액상화 저항특성에 관한 실험적 분석)

  • Choi, Jaesoon;Jin, Yunhong;Baek, Woohyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.5-13
    • /
    • 2022
  • In this study, dynamic characteristics and liquefaction resistance characteristics of silica sand which is used to simulate sandy layer were conducted using the cyclic triaxial test according to the relative density difference. The difference in liquefaction resistance with the relative density was confirmed through the test results, which the relative density conditions were changed to 40%, 60%, and 80%, and the cyclic resistance ratio (CRR) curve of the silica sand was obtained. In addition, in order to examine the validity of the liquefaction resistance ratio (CRR) curve, artificial silica sand ground was created, and liquefaction potential was evaluated through the simple assessment method and the detailed assessment method, and the safety factors of each were compared.

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems (기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션)

  • Back, Kyeongmi;Huh, Hwanil;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.

Experimental Study on the Seismic Behavior Simulation of Modular Expansion Joint (모듈러 신축이음장치 지진거동 모사 실험적 연구)

  • Lee, Jung-Woo;Choi, Eun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • In order to evaluate the seismic performance of the modular expansion joint known for its large expansion allowance and remarkable durability, this study conducts seismic response analysis and seismic simulation test. The bridge selected for the seismic response analysis is a cable stayed bridge with main span length of 1,000m. Three artificial earthquake were generated with respect to the design response spectra of the Korean Standards (KS), AASHTO LRFD and Eurocode, and applied to the selected bridge. The seismic simulation tests reproduced the artificial earthquakes using dynamic hydraulic actuators in the longitudinal and transverse directions. The test results verified the durability and safety of the expansion joint in view of its seismic behavior since abnormal behavior or failure of the expansion joint was not observed when the artificial earthquake waves were applied in the longitudinal direction, transverse direction and both directions.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.