• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.025 seconds

A DAMAGE IDENTIFICATION METHOD FOR THIN CYLINDRICAL SHELLS (얇은 원통형 쉘에 발생한 손상 규명)

  • Oh H.;Cho J.;Lee U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.394-399
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion fur a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the dynamic equations of the damaged cylindrical shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations fer damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

  • PDF

Development of a Pet Robot Chasing a Moving Person in Outdoor Environment

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Aoshima, Nobuharu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.67-72
    • /
    • 2005
  • In a park or street, we can see many people jogging or walking with their dogs that are chasing their masters. In this study, a pet robot that imitates dog's behavior is developed. The task of robot is to chase a person who is recognized as the master. The physical structure and the sensor system are designed for the task and environment. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a person who is jogging in outdoor environment like a park. A sensor system, which can detect relative position of the master to the robot in highly dynamic and hazardous worlds, is developed. This sensor system consists of a signal transmitter which is held by the master and ultrasonic sensor array which are mounted on the robot. The transmitter emits RF (radio frequency) and ultrasonic signals simultaneously. The ultrasonic sensor array detects the signals and calculates direction and distance between the robot and the transmitter. The developed RF-ultrasonic sensor is evaluated through experiments. A purely reactive behavior-based control architecture is used for the robot. The behavior control performance of the robot is assessed in outdoor and indoor tests.

Proposition to Natural Frequency of Liquid Column Vibration Absorber with Vertical-horizontal Area Ratio (수직-수평부 단면적비에 따른 동조액체기둥형 감쇠장치의 고유진동수 산정식 제안)

  • Woo, Sung-Sik;Chung, Lan;Lee, Joung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA has a different value compared with calculated one. The effective length($L_e$) was revised using by power equation. In the case01 to 19, the standard deviation($S_r$) is 4.7292 and the coefficient of correlation(r) is 0.9856. In the case21 to 61, the standard deviation($S_r$) is 14.2143 and the coefficient of correlation(r) is 0.9935. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel (304 스테인리스강의 300℃에서 저주기 피로수명 증가)

  • Kim, Dae Whan;Han, Chang Hee;Lee, Bong Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Xu, Yanxia;Tang, Bo;Song, Xingfu;Sun, Ze;Yu, Jianguo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2355-2364
    • /
    • 2018
  • We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in $TiO_2$ production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

Flutter and buffeting responses of the Shantou Bay Bridge

  • Gu, M.;Chen, W.;Zhu, L.D.;Song, J.Z.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.505-518
    • /
    • 2001
  • Shantou Bay Bridge is the first long-span suspension bridge in China. Because of its location near the Shantou Seaport and its exposure to high typhoon winds, wind-resistant studies are necessary to be made. In this paper, critical flutter wind speeds and buffeting responses of this bridge at its operation and main construction stages are investigated. The Buffeting Response Spectrum method is first briefly presented. Then the sectional model test is carried out to directly obtain the critical flutter wind speed and to identify the flutter derivatives, which are adopted for the later analysis of the buffeting responses using the Buffeting Response Spectrum method. Finally the aeroelastic full bridge model is tested to further investigate the dynamic effects of the bridge. The results from the tests and the computations indicate that the flutter and buffeting behaviors of the Shantou Bay Bridge are satisfied.

Investigation of wind actions and effects on the Leaning Tower of Pisa

  • Solari, Giovanni;Reinhold, Timothy A.;Livesey, Flora
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1998
  • This paper describes wind investigations for the Leaning Tower of Pisa which were conducted as part of an overall evaluation of its behaviour. Normally a short, stiff and heavy building would not be a candidate for detailed wind analyses. However, because of extremely high soil pressures developed from its inclination, there has been increasing concern that environmental loading such as wind actions could combine with existing conditions to cause the collapse of the tower. The studies involved wind assessment at the site as a function of wind direction, analysis of historical wind data to determine extreme wind probabilities of occurrence, estimation of structural properties, analytical and boundary layer wind tunnel investigations of wind loads and evaluation of the response with special concern for loads in the direction of inclination of the tower and significant wake effects from the neighboring cathedral for critical wind directions. The conclusions discuss the role of wind on structural safety, the precision of results attained and possible future studies involving field measurements aimed at validating or improving the analytical and boundary layer wind tunnel based assessments.

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavebdra Rao, M.V.;Asha, M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.29-44
    • /
    • 2010
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios which was underlain by either rigid concrete base, under both dry and saturated condition. The effect of saturation on the damping ratio of finite sand stratum underlain by a rigid base has been verified and compared with the results obtained for the case of finite dry sand stratum underlain by the rigid base. Comparison of results of the experimental study showed that the damping in both the cases is less than 10%. The damping ratio obtained for finite saturated sand stratum is marginally lower than that obtained on finite dry sand stratum at H/B ratio of 0.5. The difference between the two cases becomes significant when the H/B ratio increases to 3.0, indicating the significant influence of soil moisture on damping ratio of foundation- soil system with increase in the thickness of the finite sand stratum. Comparison of the predicted damping ratio for a homogeneous sand stratum with the experimental damping ratio obtained corresponding to the height to width ratio of 3.0 of the finite sand stratum underlain by the rigid concrete base indicates a significant reduction in damping ratio of the foundation-soil system for both the cases.

Experimental investigation of a new steel friction device with link element for seismic strengthening of structures

  • Papadopoulos, Panikos K.;Salonikios, Thomas N.;Dimitrakis, Stergios A.;Papadopoulos, Alkis P.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.487-504
    • /
    • 2013
  • In the present work a new friction device, with a set of single or double rotational friction flanges and a link element, is described and tested. The mechanism may be applied for the strengthening of existing r/c or steel buildings as well as in new constructed buildings. The device has selectable variable behavior in different levels of displacement and an interlock mechanism that is provided by the link element. The link element may be designed to lock at preselected level of displacement, offering in this way an extra safety reserve against strong earthquakes. A summary of the existing literature about other similar mechanisms is initially presented in this paper. The proposed mechanism is presented and described in details. Laboratory experiments are presented in detail and the resulted response that proves the efficiency of the mechanism at selectable levels of strength capacity is discussed. Drawings of the mechanism attached to a r/c frame with connection details are also included. Finally a dynamic analysis of two r/c frames, with and without the proposed mechanism attached, is performed and the resulted response is given. The main conclusion is that the proposed mechanism is a cheap and efficient devise for the improvement of the performance of new or existing framed buildings to seismic loads.