• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.028 seconds

Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires (댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증)

  • 김성대;김원진;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.460-465
    • /
    • 2002
  • The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

  • PDF

A Study on the Optimal Design, Modeling and Control of the Multi d.o.f Precision Positioning System Using Magnetic Levitation Actuating Principle (자기 부상 방식 구동원리를 이용한 다자유도 정밀 위치 시스템의 최적 설계, 모델링 및 제어에 관한 연구)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.779-787
    • /
    • 2001
  • The multi degree of freedom system using magnetic levitation has been implemented successfully. Differently from another noncontact systems, the developed system was focused on the maximization of the system stiffness under the constraint of a limited input. The variation of a relative adopting point between the magnetic pair, its location on the fixed base, and the selection of optimal specifications for the main active magnetic elements give us another chance to realize the increased robustness against external disturbances with the less control inputs. In this paper, the overall development procedures are given including the optimal design, the dynamic modeling, the various control tests, and the main issues to be solved.

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

Fixed Bed Study for a Detritiation Adsorber

  • Kim K. R.;Lee M. S.;Paek S.;Yim S. P,;Ahn D. H.;Chung H.;Shim M. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.119-125
    • /
    • 2005
  • A method of predicting the tritium concentration in the air leaving an atmospheric detritiation dryer was modeled for designing a fixed bed dryer and preparing an advanced dryer control. In order to quantify the bed utilization and the dynamic capacity against an inlet humidity and a flow rate, a series of quantitative tests based on the break-through behavior were carried out in an isothermal fixed bed of synthetic zeolites such type as molecular sieve 4A, 5A, 13X and mordenite. The amount of water vapor breaking during the adsorption was estimated to give a breakthrough capacity at the various inlet flow rates and humidity conditions. The molecular sieve 13X exhibited a better adsorption performance at a given bed height.

  • PDF

High Temperature Wear Behavior of Inconel 690 Steam Generator tube (인코벨 690 증기발생기 세관의 고온 마모 거동)

  • 홍진기;김인섭;김형남;장기상
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.59-62
    • /
    • 2001
  • Flow induced vibration in steam generators has caused dynamic interactions between tubes and contacting materials resulting in fretting wear . Series of experiments have been performed to examine the wear properties of Inconel 690 steam generator tubes in various environmental conditions. For the present study, the test rig was designed to examine the fretting wear and rolling wear properties in high temperature(room temperature - 290。C) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of the steam generator tube materials. To investigate the wear mechanism of material, the worn was observed using scanning electron microscopy. The weight loss increase at higher test temperature was caused by the decrease of water viscosity and the mechanical property change of tube material. The mechanical property changes of steam generator tube material, such as decrease of hardness or yield stress in the high temperature tests. From the SEM observation of worn surfaces, the severe wear scars were observed in specimens tested at the higher temperature.

  • PDF

The prediction of grain size of Al-5wt%Mg alloy by FEM (유한요소법을 이용한 Al-5wt%Mg합금의 미세조직 크기 예측)

  • 황원주;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.620-625
    • /
    • 1999
  • A finite element analysis is performed to predict the recrystallized volume fraction and the mean grain size in hot compression of Al-5wt%Mg alloy. In the analysis, a modeling equation of flow stress is assumed as a function of strain, strain rate, and temperature. And the influence of above varibles on flow stress is quantified by using Zener-Hollomon Parameter. In the modeling equation, effects of strain hardening and dynamic recrystallization on microstructure of Al-5wt%Mg alloy are investigated. The predicted results of recrystallized volume fraction and mean grain size are in good agreement with those of microstructures obtained from hot compression tests.

  • PDF

Johnson-Cook constitutive relation of sheet metals for an auto-body with a tension split Hopkinson bar apparatus (Tension Split Hopkinson bar를 이용한 자동차 성형용 금속 박판의 Johnson-Cook 구성방정식 결정)

  • Kang, Woo-Jong;Cho, Sang-Soon;Huh, Hoon;Jung, Dong-Taek
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.84-88
    • /
    • 1997
  • The Jonhnson-Cook constitutive relation has been used in dynamic plasticities. The constants of the Jonhson-Cook relation of sheet metals for an autobody is not known yet. In this paper, the material properties of SPCEN, SPCC and SPRC in the high strain rate states have been acquired. A new tension split Hopkinson bar was used in high speed tensile tests of sheet metals. The experimental results acquired from the apparatus are used to determine the constants of Johnson-Cook constitutive relation of sheet metals. This results can be used to analysis of crashworthness.

  • PDF

Effect of SiC Particle on Hot Workability of $SiC_P$/AA2024 Composites (AA2024/$SiC_P$ 복합재료의 고온소성에 미치는 $SiC_P$의 영향)

  • 고병철;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.216-219
    • /
    • 1997
  • Hot workability of SiCp/AA2024 composites reinforced with different vol. % of SiCp reinforcements (0, 5, 10, 15, 20, and 30 vol. %) was investigated by hot torsion tests. Hot restoration of the composites was studied from the flow curves and deformed microstructures. Dynamic recrystallization (DRX) was occurred in all the composites during the hot deformation at 370-43$0^{\circ}C$ under a strain rate of 1.0/sec. Also, the flow stress of the composites increased with increasing the SiCp reinforcement vol. % and the difference of flow stress between the composites decreased with increasing the deformation temperature.

  • PDF

High Temperature Deformation Behavior and Estimation for Formability of Zr55Cu30Al10Ni5 Bulk Metallic Glass (Zr계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.309-312
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$(at. %) bulk metallic glass(BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure with the analysis of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) data. A series of compression tests has consequently been performed in the region of supercooled liquid temperature to investigate the behavior of high temperature deformation. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires (댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증)

  • 김성대;김원진;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.731-737
    • /
    • 2002
  • Nonlinear vibration of the CRT shadow mask with impact damping wires is analyzed in consideration of the mask tension distribution and the effect of wire impact damping. A reduced order FEM model of the shadow mask is obtained from dynamic condensation of the mass and stiffness matrices, and damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber.