• Title/Summary/Keyword: dynamic system modeling

Search Result 1,421, Processing Time 0.036 seconds

Dynamic System Modeling for Closed Loop Supply Chains System

  • Wadhwa, Subhash;Madaan, Jitendra
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.78-89
    • /
    • 2008
  • The need for holistic modeling efforts for returns that capture the extended closed loop supply chain (CLSC) system at strategic as well as operational level has been clearly recognized by the industry and academia. Strategic decision-makers need comprehensive models that can guide them in efficient decision-making to increase the profitability of the entire forward and return chain. Therefore, determination of a near optimal design configuration, which includes the environmental, economical and technological capability factors, is important in strategic decision-making effort that affect the profitability of the closed loop supply chain. In this paper, we adopted an improved system dynamics methodology to tackle strategic issues that affect various performance measures, like market, time/cost, environment etc., for closed loop supply chains. After studying real life implementation issues in CLSC design, we presented guidelines for the PBM (Participative Business Modeling) methodology and presented its extension for the strategic dynamic system modeling of return chains. Finally, we demonstrated the measurement of operational performance by extending SD (system dynamic) application to closed loop supply chain management.

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

End-to-end system level modeling and simulation for medium-voltage DC electric ship power systems

  • Zhu, Wanlu;Shi, Jian;Abdelwahed, Sherif
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • Dynamic simulation is critical for electrical ship studies as it obtains the necessary information to capture and characterize system performance over the range of system operations and dynamic events such as disturbances or contingencies. However, modeling and simulation of the interactive electrical and mechanical dynamics involves setting up and solving system equations in time-domain that is typically time consuming and computationally expensive. Accurate assessment of system dynamic behaviors of interest without excessive computational overhead has become a serious concern and challenge for practical application of electrical ship design, analysis, optimization and control. This paper aims to develop a systematic approach to classify the sophisticated dynamic phenomenon encountered in electrical ship modeling and simulation practices based on the design intention and the time scale of interest. Then a novel, comprehensive, coherent, and end-to-end mathematical modeling and simulation approach has been developed for the latest Medium Voltage Direct Current (MVDC) Shipboard Power System (SPS) with the objective to effectively and efficiently capture the system behavior for ship-wide system-level studies. The accuracy and computation efficiency of the proposed approach has been evaluated and validated within the time frame of interest in the cast studies. The significance and the potential application of the proposed modeling and simulation approach are also discussed.

A Study of Dynamic Modeling of a Magnetic Levitation Vehicle (자기부상열차의 동적 모델링 연구)

  • 한형석;조홍재;김동성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.160-166
    • /
    • 2003
  • Interest in advanced vehicles results in correspondingly increased interest in modeling and simulation of the dynamic behavior of Maglev-type vehicle systems. DADS is a program especially suited for the analysis of multibody mechanical systems. This paper demonstrates the application of DADS to the dynamic modeling and simulation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities of DADS. As a case study, an analysis of a vehicle based on the UTM01 system is presented. This paper shows that the presented modeling technique is applicable to the dynamic characteristics evaluation and control law design of Maglev- type vehicles.

REVIEW OF VARIOUS DYNAMIC MODELING METHODS AND DEVELOPMENT OF AN INTUITIVE MODELING METHOD FOR DYNAMIC SYSTEMS

  • Shin, Seung-Ki;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.375-386
    • /
    • 2008
  • Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing reliability graph with general gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables.

Development of High Performance Dynamic System Monitor for Dynamic Modeling and Disturbance Monitoring (다이나믹 모델링 및 외란감시를 위한 고성능 Dynamic System Monitor 장비 개발)

  • Kim, D.J.;Lee, J.J.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.50_51
    • /
    • 2009
  • This paper describes the novel real-time embeded Dynamic System Monitor(KDSM) for dynamic device modeling and disturbace monitoring. The KDSM uses the variable resampling technique together with DFT algorithm so that it overcomes the shortcomings of the existing DFT algorithm at the big deviation of network frequency. The suggested algorithm is implemented by using the NI-PXI system, and verified by applying to the generator testing.

  • PDF

Dynamic Modeling and Control of Production/Inventory System

  • Kim, Hwan-Seong;Tran, Xuan-Thuong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.162-163
    • /
    • 2011
  • This paper presents the system dynamics methodology for modeling and control the production/inventory system. Under system dynamics point of view, we can apply some production/inventory policies as if we use the control laws for dynamics systems, then the behavior of system is analyzed and evaluated to improve the performance of production/inventory system. We also utilize the hybrid modeling method for the dynamic of production system with the combination of Matlab/Simulink and Matlab/Sateflow. Finally, the numerical simulation results are carried out in Matlab/Simulink environment and compare with the results from other works. It is shown that our approach can obtain some good performances (such as operational cost, stability of inventory, customer service level).

  • PDF

Dynamic Modeling of a Railway Vehicle under Braking (제동시의 철도차량을 위한 동적모델)

  • Park, Joon-Hyuk;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.431-437
    • /
    • 2007
  • This paper describes the dynamic modeling of a railway vehicle when it is under braking force. It is important for the enhancement of braking performance to establish a proper dynamic model of a railway vehicle because the braking performance is affected by some dynamic forces generated by a railway vehicle when it undergoes braking. In this paper, a dynamic model for one vehicle is suggested to compute the dynamic behavior of a railway vehicle in the HILS(Hardware In-the-loop Simulation) system for the railway vehicle braking devices. To simplify the dynamic model, friction between a wheel and a rail is assumed that there exist only the static and the dynamic friction forces. Static friction coefficient is also assumed to be a function of the running speed. Some simulations are carried out with various braking forces, and the braking characteristics according to the change of the braking force are discussed. This study can provide some fundamental results to construct the HILS system for braking devices of a railway vehicle.

Hydraulically Actuated of Half Car Active Suspension System

  • Sam, Yahaya Md.;Osman, Johari Halim Shah
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1721-1726
    • /
    • 2004
  • The studies of the half active suspension have been performed using various suspension models. In the early days, the modeling considered the inputs to the active suspension as the linear forces. Recently, due to the development of new control theory, the forces input to the half car active suspension system has been replaced by an actual input to the hydraulic actuators. Therefore, the dynamic of the active suspension system now consists of the dynamic of half car suspension system plus the dynamic of the hydraulic actuators. This paper proposed a new modeling technique in integrating both dynamic models. The proportional integral sliding mode control technique is utilized to control the hydraulically actuated of the half car active suspension system. The performance of the half car hydraulically actuated active suspension system is simulated with a bump input. The results show that the proposed modeling technique and the proportional integral sliding mode controller are improved the ride comfort and ride handling of the half car active suspension system.

  • PDF

An Efficient Dynamic Modeling Method for Hybrid Robotic Systems

  • Chung, Goo-Bong;Yi, Byung-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2719-2724
    • /
    • 2003
  • In this paper, we deal with the kinematic and dynamic modeling of hybrid robotic systems that are constructed by combination of parallel and serial modules or series of parallel modules. Previously, open-tree structure has been employed for dynamic modeling of hybrid robotic systems. Though this method is generally used, however, it requires expensive computation as the size of the system increases. Therefore, we propose an efficient dynamic modeling methodology for hybrid robotic systems. Initially, the dynamic model for the proximal module is obtained with respect to the independent joint coordinates. Then, in order to represent the operational dynamics of the proximal module, we model virtual joints attached at the top platform of the proximal module. The dynamic motion of the next module exerts dynamic forces to the virtual joints, which in fact is equivalent to the reaction forces exerted on the platform of the lower module by the dynamics of the upper module. Then, the dynamic forces at the virtual joints are distributed to the independent joints of the proximal module. For multiple modules, this scheme can be constructed as a recursive dynamic formulation, which results in reduction of the complexness of the open-tree structure method for modeling of hybrid robotic systems. Simulation for inverse dynamics is performed to validate the proposed modeling algorithm.

  • PDF