• Title/Summary/Keyword: dynamic susceptibility

Search Result 69, Processing Time 0.028 seconds

Understanding of Perfusion MR Imaging (관류자기공명영상의 이해)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Perfusion MR imaging is how to use exogenous and endogenous contrast agent. Exogenous perfusion MRI methods which are dynamic susceptibility contrast using $T2^*$ effect and dynamic contrast-enhanced using T1 weighted image after injection contrast media. An endogenous perfusion MRI method which is arterial spin labeling using arterial blood flow in body. In order to exam perfusion MRI in human, technical access are very important according to disease conditions. For instance, dynamic susceptibility contrast is used in patients with acute stroke because of short exam time, while dynamic susceptibility contrast or dynamic contrast enhancement provides the various perfusion information for patients with tumor, vascular stenosis. Arterial spin labeling is useful for children, women who are expected to be pregnant. In this regard, perfusion MR imaging is required to understanding, and the author would like to share information with clinical users

  • PDF

A novel time scale of dynamic heterogeneity in a supercooled liquid system

  • Mun, Seok-Jin;Park, Gye-Hyeon;Park, Sang-Won;Jeong, Yeon-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.138-146
    • /
    • 2015
  • 액체 상태의 물질이 매우 급속하게 냉각되면 일반적으로 과냉각액체(supercooled liquid) 상태에 도달한다. 과냉각액체는 더 낮은 온도에서 유리상(glass phase)으로 상전이를 일으킨다고 알려져 있는데, 이때 나타나는 동역학적 불균일성(dynamic heterogeneity)은 상전이를 기술하는데 중요한 역할을 한다. 그러나 일반적인 액체의 상전이를 연구할 때 주로 사용되던 상관함수(correlation function)으로는 이러한 불균일성을 정량적으로 표현하기 어렵기 때문에 동역학적 민감도(dynamic susceptibility)나 multi-time correlation function 등 동역학적 성질(dynamic property)로부터 특징적인 시간 개념 및 거리 개념을 도출하려는 연구가 많이 진행되어 왔다. 본 논문에서는 일반적으로 특징적인 거리 개념을 도출해 내는데 사용되는 4점 밀도 상관함수(four-point density correlation function)인 dynamic susceptibility(${\chi}^4$)가 입자 밀도의 요동(fluctuation)의 상관관계(correlation)가 지속되는 특징적인 시간 개념에 대한 정보 또한 포함하고 있다는 점에 주목하였다. 이에 따라 ${\chi}^4$의 시간에 대한 적분인 ${\tau}_4$를 새롭게 도입하였으며 그 결과로 ${\tau}_4$는 three-time density correlation function으로부터 도출한 ${\tau}_{Dh}$와 같은 축척(scaling)을 가지는 것을 확인하였다. 과냉각액체에 대한 장난감 모형(toy model)의 일종인 "Lennard-Jones potential 하에서 운동하는 서로 다른 두 종류의 입자들"을 연구에 사용하였다.

  • PDF

Effect of Supratentorial Stroke on Cerebellar Hemodynamic Parameters - Assessment by Dynamic Susceptibility Contrast MR Imaging (천막상부 뇌졸중에서 소뇌의 혈역학 변화 -Dynamic Susceptibility Contrast MR 영상을 이용한-)

  • Han, Si-Ryung;Kim, Bum-Soo;Guak, Tae-Ho;Choi, Young-Bin;Kim, Yeong-In
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2002
  • Background & Purpose : Dynamic susceptibility contrast MR imaging, one method of perfusion MRI, was developed to define cerebral hemodynamic status with good anatomical resolution. The authors investigated hemodynamic parameters using this imaging method, in an effort to identify hemodynamic changes on the remote crossed cerebellum of patients with a supratentorial infarct. Methods : Dynamic susceptibility contrast MR imaging was performed in 15 patients with only unilateral supratentorial infarcts. Imaging was obtained at the anatomic level of the cerebellum. rCBF, rCBV, MTT and TP were determined over both cerebellar hemispheres of interest. Results : The rCBF and rCBV values of the contralateral cerebellar hemisphere were significantly more decreased than those of the ipsilateral cerebellar hemisphere in 12 patients(p=0.028, 0.033). MTT and TP values of the contralateral and ipsilateral cerebellar hemispheres didn't reveal any differences(p=0.130, 0.121). Conclusions : The results of this work suggest that the region which are remote from the ischemic brain lesion shows no changes of MTT or TP but show decrease of rCBF and rCBV, mean to diaschisis, it also demonstrates that perfusion MRI is an easily available method to evaluate the hemodynamic status of the brain.

  • PDF

Evaluation for Moisture Susceptibility of Asphalt Mixtures using Non-Destructive Impact Wave (비파괴 충격파를 이용한 아스팔트 공시체의 수분민감도 평가)

  • Jang, Byung Kwan;Kim, Do Wan;Mun, Sung Ho;Jang, Yeong Sun
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.53-63
    • /
    • 2013
  • PURPOSES : This study is to evaluate moisture susceptibility of asphalt mixtures by using non-destructive impact wave and to determine durability so as to decrease the gap between before and after freezing in the future. METHODS : Using non-destructive impact wave, this study is to determine the dynamic modulus of asphalt specimen. Furthermore, the results obtained from two experiment accelerometers are used for the dynamic modulus determination. The dynamic moduli of specimens are compared with those of the freezing-thawing specimens. RESULTS : Test results showed that the dynamic modulus before freezing and thawing environment loads at each temperature dropped about 3.7% after the environmental loads. Furthermore, correlation analysis indicates that transition of dynamic modulus at each point is about 89.59%. CONCLUSIONS: Evaluation of asphalt mixtures using non-destructive impact wave has excellent repeatability and simple equipment for the test. Consequently, the method in the study will be useful for evaluating the characteristics of a various asphalt mixtures.

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia

  • Juan Yang;Sungmin Park;Hyun Ju Kim;Sang Jun Lee;Won Hee Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.180-187
    • /
    • 2023
  • The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

Cerebral Blood Volume Mapping from Dynamic Susceptibility Contrast Magnetic Resonance Images (Dynamic Susceptibility Contrast Magnetic Resonance Images를 이용한 뇌혈류량 지도 구성)

  • Kim, S.J.;Lee, S.K.;Kim, K.G.;Kim, J.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.281-282
    • /
    • 1998
  • Recently, there has been growing interest in the assessment of physiological parameters on brain perfusion that provide more information than pure morphologic diagnosis. Quantification of parameters that characterize cerebral micro-circulation with magnetic resonance imaging is of great relevance for clinical application. We determine the local tissue concentration by exponential relationship between the relative signal reduction S(t)/$S_0$ and local tissue concentration of contrast material $C_m(t)$ in dynamic susceptibility contrast enhanced MR imaging. And then we made relative regional blood volume map by calculating the area under the measured concentration-time curves $C_m(t)$ during first pass of paramagnetic contrast material as a preliminary step for perfusion map. These images make it possible to compare the rCBV in different brain regions in one individual at a time. We have it in contemplation to obtain arterial and brain signal time curves simultaneously to make absolute rCBV and perfusion (rCBF) map. These maps may provide the method of comparative investigations of different patients having strong variation in AIF.

  • PDF

A Fundamental Study of Rejuvenator for Warm in Place Recycling Asphalt Pavement Mixtures (현장 중온 재생 혼합물용 재생첨가제의 기초적인 연구)

  • Park, JaeYoung;Lee, Kanghun;Kwon, SooAhn;Lee, JaeJun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.13-20
    • /
    • 2017
  • PURPOSES : This research was a laboratory study for evaluating the Reclaimed Asphalt Pavement (RAP) mixture added developed rejuvenator for warm mix recycling. Waste asphalt mixtures occupy about 18.2% of construction wastes in Korea. Moreover, most rejuvenators were imported from Europe or the U.S. Therefore, improving usage of RAP with a developed rejuvenator material provides environmental protection at a reduced cost. METHODS : The specimen used for this experiment was performed by only using RAP. A suitable rejuvenator for Target PG was then added. In addition, a conventional rejuvenator was selected to compare performance and specimens introduced with the same procedure as the developed rejuvenator was prepared. In order to evaluate rutting resistance and water susceptibility, we conducted a deformation strength test, a tensile strength ratio test, and a dynamic immersion test with the prepared mixtures. RESULTS :Laboratory test results indicated that both the developed additive and conventional additive improved performance of the recycled asphalt mixtures compared to mixtures without the rejuvenator. In addition, the deformation strength test and TSR test results satisfied standards for domestic recycling asphalt mixtures. The dynamic immersion test showed that the developed rejuvenator has superior scaling resistance than the conventional rejuvenator. CONCLUSIONS : In terms of rutting resistance and moisture susceptibility, the warm mix recycled asphalt mixtures with the developed rejuvenator appeared to effectively recovered performance.

Assessment of Non-permeability of Gd-DTPA for Dynamic Susceptibility Contrast in Human Brain: A Preliminary Study Using Non-linear Curve Fitting (뇌영역의 동적 자화율 대조도 영상에서 Gd-DTPA 조영제의 비투과성 조사: 새로운 비선형 곡선조화 알고리즘 개발의 예비연구)

  • Yoon, Seong-Ik;Jahng, Geon-Ho;Khang, Hyun-Soo;Kim, Young-Joo;Choel, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • To develop an advanced non-linear curve fitting (NLCF) algorithm for performing dynamic susceptibility contrast study of the brain. The first pass effects give rise to spuriously high estimates of $K^{trans}$ for the voxels that represent the large vascular components. An explicit threshold value was used to reject voxels. The blood perfusion and volume estimation were accurately evaluated in the $T2^*$-weighted dynamic contrast enhanced (DCE)-MR images. From each of the recalculated parameters, a perfusion weighted image was outlined by using the modified non-linear curve fitting algorithm. The present study demonstrated an improvement of an estimation of the kinetic parameters from the DCE $T2^*$-weighted magnetic resonance imaging data with using contrast agents.

  • PDF