• Title/Summary/Keyword: dynamic stiffness criteria

Search Result 55, Processing Time 0.021 seconds

Gross motor dysfunction and balance impairments in children and adolescents with Down syndrome: a systematic review

  • Jain, Preyal D.;Nayak, Akshatha;Karnad, Shreekanth D.;Doctor, Kaiorisa N.
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.3
    • /
    • pp.142-149
    • /
    • 2022
  • Background: Individuals with Down syndrome present with several impairments such as hypotonia, ligament laxity, decreased muscle strength, insufficient muscular cocontraction, inadequate postural control, and disturbed proprioception. These factors are responsible for the developmental challenges faced by children with Down syndrome. These individuals also present with balance dysfunctions. Purpose: This systematic review aims to describe the motor dysfunction and balance impairments in children and adolescents with Down syndrome. Methods: We searched the Scopus, ScienceDirect, MEDLINE, Wiley, and EBSCO databases for observational studies evaluating the motor abilities and balance performance in individuals with Down syndrome. The review was registered on PROSPERO. Results: A total of 1,096 articles were retrieved; after careful screening and scrutinizing against the inclusion and exclusion criteria, 10 articles were included in the review. Overall, the children and adolescents with Down syndrome showed delays and dysfunction in performing various activities such as sitting, pulling to stand, standing, and walking. They also presented with compensatory mechanisms to maintain their equilibrium in static and dynamic activities. Conclusion: The motor development of children with Down syndrome is significantly delayed due to structural differences in the brain. These individuals have inefficient compensatory strategies like increasing step width, increasing frequency of mediolateral center of pressure displacement, decreasing anteroposterior displacement, increasing trunk stiffness, and increasing posterior trunk displacement to maintain equilibrium. Down syndrome presents with interindividual variations; therefore, a thorough evaluation is required before a structured intervention is developed to improve motor and balance dysfunction.

Study on Rubber Damping Characteristics of Vibration Reduction Mounts for UAVs (무인기용 진동 저감 마운트의 고무 감쇠 특성에 대한 연구)

  • Chan-Whi Kang;Hun-Suh Park;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.927-933
    • /
    • 2023
  • In modern times, with advances in semiconductor technology such as electronic devices, the need to improve the quality of onboard equipment with advanced electronic parts in automobiles, drones, airplanes, projectiles, and various fields, and reduce the impact of various disturbances on onboard equipment is becoming more important. Vibration control through hardware must be determined to prevent damage and improve quality to equipment operating in various environments such as automobiles, drones, airplanes, and projectiles. This study focuses on the study of vibration damping systems to protect mounted equipment from various disturbances and improve stability. Dynamic characteristics analysis, including compressive stiffness, damping rate, and frequency response, and vibration characteristics in the frequency domain of rubber dampers were identified through FEM analysis to identify the characteristics of rubber dampers. Through these findings, we would like to present the criteria for selecting a suitable rubber damper under various disturbance conditions.

Evaluation of Structural Performance of Multi-tiered Roof Korean Traditional Timber Building Daeungbojeon Hall of Magoksa Temple Under Vertical Load (중층 전통 목조건축 마곡사 대웅보전의 수직하중에 대한 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper assesses the structural performance of the Daeungbojeon Hall of Magoksa in Gongju, a representative multi-tiered roof traditional timber structure from the Joseon Dynasty, under vertical loads. Employing midas Gen, a structural analysis software, we developed a three-dimensional analysis model closely resembling the actual structure. Static analysis was employed to evaluate the safety and serviceability of the main vertical and horizontal members under vertical loads. While all members met the safety and serviceability criteria, structural weaknesses were identified in the Daelyang of the lower floor, particularly as a transitional beam, necessitating improvement. For the evaluation of dynamic behavior characteristics, eigenvalue analysis was conducted, assuming a relative rotational stiffness of 5% at the main joints. The natural period was determined to be 1.105 seconds, placing it within the category of a Hanok of similar size. The first mode manifested as a translational movement in the forward and backward direction of the building.

Development of the Structural Condition Evaluation Technique for Asphalt Pavements Using Falling Weight Deflectometer Deflections (Falling Weight Deflectometer 처짐값을 이욤한 아스팔트 포장체의 구조적 상태 평가기법 개발)

  • Son, Jong-Chul;Rhee, Suk-Keun;An, Deok-Soon;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.115-124
    • /
    • 2006
  • The objectives of this paper are to develop the structural condition evaluation technique using Falling Weight Deflectometer deflections and propose the structural condition criteria for asphalt pavements. To figure out correlation between surface deflections and critical pavement responses, the synthetic database has been established using the finite element pavement structural analysis program. A regression approach was adopted to develop the pavement response model that can be used to compute the stresses and strains within pavement structure using the FWD deflections. Based on the pavement response model, the procedure for assessing the structural condition of pavement layers was proposed in this study. To validate the condition evaluation procedure for asphalt pavements, the FWD test, dynamic cone penetrometer test, and repeated triaxial compression test were conducted on 11 sections of national highway and 8 sections of local road. Test results indicate that the tensile strain at the bottom of AC layer and AC elastic modulus were good indicators for estimating the stiffness characteristics of AC layer. For subbase layer, the BDI value and compressive strain on top of the subbase layer were appropriate to predict the structural capacity of subbase layer. The BCI value and compressive strain on top of the subgrade were found to be good indicators for evaluating the structural condition of the subgrade. The evaluation criteria for structural condition in asphalt pavements was also proposed in this paper.

  • PDF

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.