• Title/Summary/Keyword: dynamic steady-state

Search Result 680, Processing Time 0.024 seconds

Analysis of Tire Characteristics according to Driving Conditions using Finite Element Method (유한요소법을 이용한 구동상태에 따른 타이어의 특성 분석)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Kee-Woon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.539-544
    • /
    • 2004
  • This paper discusses the measurement of tire driving performance for 2 types of tire model. Tire is almost composed of rubber, and this is related with the bearing capacity of tire due to the external force. In this study, an explicit time integration method has been used to simulate steady state rolling along a straight path and over a cleat. And analysis for tire dynamic response rolling over a cleat is importnat to study automobile NVH properties. Besides, the evaluation of contact shear force is perfomed for steady state rolling and braking state. The results show that there are noticeable differences between 205/60R15 and 225/60R15 tire model.

  • PDF

Analysis of Steady Heat Conduction for Rubber Pads of a Tank Track Subjected to Dynamic Loading (동적하중을 받는 궤도차량 고무패드의 정상 열전도 해석)

  • Kim, Hyung-Je;Kim, Byung-Tak
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.153-161
    • /
    • 2001
  • The rubber pads era tank which undergo dynamic deformations with the sufficient amplitudes and frequencies lead to a considerable internal temperature rise due to the heat generation. The heat generation which is dependent on the viscoelastic characteristics or a rubber is due to the conversion of partial mechanical energy into thermal energy identical to the area oi hysteresis loop. Heat generation without adequate heat dissipation leads to heat build-up and the excessive temperature rite exerts a bad influence upon the performance and the life of rubber products. In this paper, temperature distributions of the rubber pads of a tank track subjected to dynamic loads are obtained under the assumption of the steady state. Heat generation rates used in this finite element analysis are acquired through experiments and the computed temperature fields are displayed in isothermal contour regions.

  • PDF

Comparison of Three Active-Frequency-Drift Islanding Detection Methods for Single-Phase Grid-Connected Inverters

  • Kan, Jia-rong;Jiang, Hui;Tang, Yu;Wu, Dong-chun;Wu, Yun-ya;Wu, Jiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 2019
  • A novel islanding detection method is proposed in this paper. It is based on a frequency drooping PLL, which was presented in a previous work. The cause of errors in the non-detection zone (NDZ) of conventional frequency disturbance islanding detection methods (IDM) is analyzed. A frequency drooping phase-locked-loop (FD-PLL) is introduced into a single-phase grid-connected inverter (SPGCI), which can guarantee that grid current is in phase with the grid voltage. A novel FD-PLL IDM is proposed by improving this PLL. In order to verify the performance of the proposed FD-PLL IDM, a full performance comparison between the proposed IDM and typical existing active frequency drift IDMs is carried out, which includes both dynamic performance and steady performance. With the same NDZ, the total harmonic distortion of the grid-current in the dynamic process and steady state is analyzed. The proposed FD-PLL IDM, regardless of the dynamic or steady process, has the best power quality. Experimental and simulation results verify that the proposed FD-PLL IDM has excellent performance.

Effect of Backhole as a dynamic damper for Low Hydraulic disturbance (동적 감쇠자로서 백홀이 저주파 수력진동에 미치는 영향)

  • Khil Tae-Ock;Kim Min-Ki;Kim Sung-Hyuk;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.224-228
    • /
    • 2005
  • Dynamic control tests for Backhole as a dynamic damper were performed. For the forced oscillation generated by pressure drop in the feed line and internal wave analysis of swirl injector, hydrodynamic pulsator and 1D visualization model injector was produced, respectively We focus on effect of Backhole as a dynamic damper instead of a acoustic one. So, the breakup length and film thickness of liquid sheet on the steady state and the forced oscillation state have been measured and compared.

  • PDF

Elasto-viscoplastic Dynamic Analysis of Subterranean Storage Cavern for Petroleum Reserve (석유비축을 위한 지하저장공동의 탄.점소성 동적해석)

  • 진지섭;김수석
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1989
  • In recent times, the subterranean caverns for storing crude oils and oil products are increasingly needed. The elasto-VIScoplastic DYNamic finite element analysis program(VISDYN) has been developed in order to investigate dynamic responses of the storage cavity. And validity of the program is studied through a numerical example. Mohr-Coulomb yield criterion is adopted and associated flow rule is assumed. Geometrically nonlinear behaviour is taken into account using a total Lagrangian formulation. In dynamic deformation reponses, the difference between the steady state displacements and the unsteady state ones by the static analysis can be neglected.

  • PDF

Complex Discrete Systems Graph Simulation

  • Kadirova, Delovar;Kadirova, Aziza
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.263-274
    • /
    • 2015
  • The subject of this work is the complex discrete systems simulation special features with the aid of dynamic graph models. The proposed simulation technique allows to determine the ways for tasks solutions in terms of discrete systems analysis and synthesis of various complication: one-dimensional and multidimensional, steady and unstable, with the pulse elements abnormal operating mode and others. Often complex control systems analysis and synthesis task solutions, via classical approach comes out to be insolvent, because of the computational problems. The application of graph models allows to perform clear and strict characterization and computer procedures automation. The optimal controls synthesis algorithm presented in this paper, transferring the discrete system from target initial state to target final state within the minimum time, allows to consider the zero initial conditions systems, with the initial potential energy, with the control actions limitations and complex pulse elements operating mode.

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Im, Mun-Hyeok;Hwang, Tae-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.130-138
    • /
    • 2002
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absorbers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber were addressed. Practical pulse testing method was also proposed to identify the frequency response characteristics of the snubber.

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Hwang, Tae-Yeong
    • 연구논문집
    • /
    • s.31
    • /
    • pp.89-99
    • /
    • 2001
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absolvers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber are addressed. Practical pulse testing method was also proposed to identify the frequency response of the snubber.

  • PDF

Characteristic Analysis of Single Phase Line Start Synchrous Motor (단상 유도형 동기전동기의 동특성 해석)

  • Kim, Sol;Jang, Ki-Bong;Kim, Byung-Bok;Lee, Ju;Ko, Kwon-Min;Kim, Tea-Duk;Oh, Sang-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.648-650
    • /
    • 2002
  • SPLSSM may operate with very high efficiencies and near unity power factor, SPLSSM has been shown to be capable of desirable steady state performance, but is known to have undesirable staring performance because starting asynchronously by means of an induction cage, it operates in steady state performance of a PM motor. This combination provides the steady state performance of a permanent magnet motor without the need for an expensive drive system. However, that combination makes it difficult to analyze the transient behaviors. This paper investigates the behaviors of Single-Phase Line-Start Synchronous Motor using finite element method combined analytic method. It is shown that finite element modeling is capable of giving accurate prediction of performances. Varying the value of capacitance and material of permanent magnet shows the effect on the dynamic characteristics in this paper.

  • PDF

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.