• 제목/요약/키워드: dynamic stabilizer

검색결과 88건 처리시간 0.021초

침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석 (Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF))

  • 최재영;김도균;정의창;권해두;이승호
    • 분석과학
    • /
    • 제28권1호
    • /
    • pp.33-39
    • /
    • 2015
  • CdS 양자점 입자는 특정 파장의 빛을 방출하는 반도체 나노 결정으로 이러한 광학적 특성 때문에 질병 진단 시약, 광학기술, 미디어 산업 및 태양전지와 같은 다양한 분야에서 응용되는 물질이다. 방출하는 빛의 색은 입자의 크기에 의존하기 때문에 CdS 양자점 입자의 크기 및 크기분포를 정확하게 분석하는 것이 필요하다. 본 연구에서는 CdS 양자점 입자를 감마-선 조사법(${\gamma}$-ray irradiation method)을 이용하여 합성하고, 크기 및 크기 분포도를 결정하기 위하여 침강 장-흐름 분획법 (SdFFF)를 이용하였다. 침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 정확한 분석을 위하여 분석조건의 최적화(유속, 외부장 세기, field-programming)에 대하여 조사되었다. 투과 전자 현미경(transmission electron microscopy, TEM)으로 확인된 단일 입자의 크기는 ~4 nm 였으며, 단일 입자의 응집으로 생성된 2차 입자 크기의 평균은 159 nm로 확인되었다. 첨가된 입자 안정제의 농도가 증가할수록 CdS 양자점 입자의 크기가 감소하는 경향성을 확인하였다. 침강 장-흐름 분획법, 투과 전자 현미경, 그리고 동적 광 산란법(dynamic light scattering, DLS)으로 결정된 CdS 양자점 크기는 각각 126, 159, 그리고 152 nm 였다. 본 연구의 결과로 침강 장-흐름 분획법은 비교적 넓은 크기분포를 갖는 다양한 종류의 무기입자의 크기 및 크기 분포도를 결정하는데 유용한 방법임을 확인하였다.

Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters

  • Kim, Jung-Woon;Kim, Kun-Ji;Park, Soo-Yeon;Jeong, Kwang-Un;Lee, Myong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2966-2970
    • /
    • 2012
  • Fullerene/polystyrene ($C_{60}$/PS) nano particle was prepared by using emulsion polymerization. Styrene and fullerene were emulsified in aqueous media in the presence of poly(N-vinyl pyridine) as an emulsion stabilizer, and polymerization was initiated by water soluble radical initiator, potassium persulfate. The obtained nano particles have an average diameter in the range of 400-500 nm. The fullerene contents in the nano particle can be controlled up to 15 wt % by varying the feed ratio, which was confirmed by themogravimetric analysis (TGA) and elemental analysis (EA). The structure and morphologies of the $C_{60}$/PS nano particles were examined by various analytical techniques such as dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), and UV spectroscopy. Unlike conventional $C_{60}$/PS particles initiated by organic free radical initiators, in which the fullerene is copolymerized forming a covalent bond with styrene monomer, the prepared $C_{60}$/PS nano particles contain pristine fullerene as secondary particles homogeneously distributed in the polystyrene matrix.

전방십자인대 재건수술 환자와 정상인의 보행 연구 (Gait Study on the Normal and ACL Deficient Patients After Ligament Reconstruction Surgery Using Chaos Analysis Method)

  • 고재훈;문병영;서정탁;손권
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.435-441
    • /
    • 2006
  • The anterior cruciate ligament(ACL) is an important stabilizer of knee joint. The ACL injury of knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is essential to identify knee condition of patients who display abnormal gait. The purpose of this study is to evaluate and classify knee condition of ACL deficient patients using a nonlinear dynamic method. The nonlinear method focuses on understanding how variations in the gait pattern change over time. The experiments were carried out for 17 subjects(l2 healthy subjects and five subjects with unilateral deficiency) walking on a motorized treadmill for 100 seconds. Three dimensional kinematics of the lower extremity were collected by using four cameras and KWON 3D motion analysis system. The largest Lyapunov exponent calculated from knee joint flexion-extension time series was used to quantify knee stability. The results revealed the difference between healthy subjects and patients. The deficient knee was significantly unstable compared with the contralateral knee. This study suggests an evaluation scheme of the severity of injury and the level of recovery. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

크램쉘형 유도탄 기체분리 시뮬레이션 연구 (A Simulation Study on the Clamshell-type Missile Airframe Separation)

  • 김구;허기훈
    • 한국항공우주학회지
    • /
    • 제36권4호
    • /
    • pp.375-383
    • /
    • 2008
  • 완성무기 운반형 유도탄의 설계에는 고속비행 중 탑재물 투하에 적합한 안정성과 신뢰성 높은 기체분리 및 낙하산 전개 메커니즘이 요구된다. 이 전개 메커니즘은 다물체들 상호간의 역학적 운동 관계를 나타내는 것이므로 설계에서 모델링 & 시뮬레이션을 이용한 해석적 연구가 매우 중요한 역할을 할 수 있다. 본 논문에서는 크램쉘형 기체분리를 채택한 국내 대잠유도탄 설계에 적용된 기체분리 시뮬레이션 기법을 제시하고, 이를 이용한 주요 해석 결과를 가용한 비행시험 결과와 대비하여 보였다. 본 기법 연구의 초점은 효과적인 설계 적용의 필수적 요소인 계산의 신속성과 신뢰도 간의 적절한 조화에 주어졌다.

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

출력궤한 가변구조제어게의 강인성 설계 (Design of output feedback variable structure control system with robust properties)

  • 이기상;임재형;이정동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1199-1205
    • /
    • 1993
  • It has been well known that the assumption of full state availability is one of the most important restrictions to the practical realization of VSCS. And several attempts to alleviate the assumption had been made. However, it is not easy to find a positive scheme among them. Recently, an output feedback variable structure control system(OFVSCS) was proposed and the effectiveness of the scheme was validated for the disturbance free systems. The purpose of this study is to propose a robust OFVSCS that have the robust properties against process parameter variations and external distrubances by extending the basic OFVSCS and to evaluate its control performances through power system stabilizer design example. The ROFVSCS is composed of dynamic switching function and output feedback switching control inputs that are constructed by the use of the unknown vector modeling technique. With the proposed scheme, existence of sliding mode is guaranteed and any nonzero bias can be suppressed in the face of disturbances and process parameter variations as far as well-known matching condition is satisfied. Due to the fact that the ROFVSCS is driven by small number of measured informations, the practical application of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied, is possible with the proposed scheme. It is noticeable that the implementation cost of VSCS can be considerably reduced without sacrifice of control performances by adopting ROFVSCS since there is no need measure the states with high measurement cost.

  • PDF

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.

노치 대역을 개선한 이미지 흔들림 보정 장치의 동특성 향상과 이미지 분석 (Improvement of Dynamic Characteristics of OIS System using Improved Band Notch and Analysis of Images)

  • 손동훈;박노철;박영필;박경수
    • 정보저장시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.70-74
    • /
    • 2011
  • The mobile camera module is a device to be inserted in the digital device for camera feature. The mobile camera module is being shaken by vibrations such as handshake during the exposure time. The clarity is compromised by these vibrations, thus the vibration is considered as an external disturbance. Moreover the use of mobile camera module has been being expanded for automotive vibration should be considered. These external disturbances can cause image blurring, thus optical image stabilization should be applied for image compensation. The compensator is fulfilled mechanically by movable lens group or image sensor that adjusts the optical path to the camera movement. Open loop control is useful for well-defined systems like compliant mechanism. Notch filter and lead compensator are designed and applied to improve the stability and bandwidth. The final level of image compensating is confirmed by image processing with MATLAB and CODE V to verify the better performance.

Combined Design of PSS and STATCOM Controllers for Power System Stability Enhancement

  • Rohani, Ahmad;Tirtashi, M. Reza Safari;Noroozian, Reza
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.734-742
    • /
    • 2011
  • In this paper a robust method is presented for the combined design of STATCOM and Power System Stabilizer (PSS) controllers in order to enhance the damping of the low frequency oscillations in power systems. The combined design problems among PSS and STATCOM internal ac and dc voltage controllers has been taken into consideration. The equations that describe the proposed system have been linearized and a Fuzzy Logic Controller (FLC) has been designed for the PSS. Then, the Particle Swarm Optimization technique (PSO) which has a strong ability to find the most optimistic results is employed to search for the optimal STATCOM controller parameters. The proposed controllers are evaluated on a single machine infinite bus power system with the STATCOM installed in the midpoint of the transmission line. The results analysis reveals that the combined design has an excellent capability in damping a power system's low frequency oscillations, and that it greatly enhances the dynamic stability of power systems. Moreover, a system performance analysis under different operating conditions and some performance indices studies show the effectiveness of the combined design.

SVC를 포함한 전력시스템의 안정도 향상을 위한 최적 퍼지-PI 제어기의 설계 (A Design of Optimal Fuzzy-PI Controller to Improve System Stability of Power System with Static VAR Compensator)

  • 김해재;주석민
    • 전기학회논문지P
    • /
    • 제53권3호
    • /
    • pp.122-128
    • /
    • 2004
  • This paper presents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors(TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be based on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and applied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.