• Title/Summary/Keyword: dynamic spectrum allocation (DSA)

Search Result 7, Processing Time 0.017 seconds

Performance Analysis of Dynamic Spectrum Allocation in Heterogeneous Wireless Networks

  • Ha, Jeoung-Lak;Kim, Jin-Up;Kim, Sang-Ha
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.292-301
    • /
    • 2010
  • Increasing convergence among heterogeneous radio networks is expected to be a key feature of future ubiquitous services. The convergence of radio networks in combination with dynamic spectrum allocation (DSA) could be a beneficial means to solve the growing demand for radio spectrum. DSA might enhance the spectrum utilization of involved radio networks to comply with user requirements for high-quality multimedia services. This paper proposes a simple spectrum allocation algorithm and presents an analytical model of dynamic spectrum resource allocation between two networks using a 4-D Markov chain. We argue that there may exist a break-even point for choosing whether or not to adopt DSA in a system. We point out certain circumstances where DSA is not a viable alternative. We also discuss the performance of DSA against the degree of resource sharing using the proposed analytical model and simulations. The presented analytical model is not restricted to DSA, and can be applied to a general resource sharing study.

Dynamic Spectrum Allocation Algorithm for Maritime Communications using Spectrum Sharing and Priority (해상무선통신환경에서 스펙트럼 공유와 우선순위를 적용한 동적스펙트럼할당 알고리즘 기술연구)

  • Lim, Moo-Sung;Kim, Kyung-Sung;Lee, Yeon-Woo;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1001-1008
    • /
    • 2010
  • In this paper, we propose the dynamic spectrum allocation (DSA) algorithm using spectrum sharing method considering the long-term priority between NOs and service classes for the maritime communication system environment where a ship locates at either near shore (or land) or off-shore. It was shown that the proposed algorithm using spectrum sharing with priorities could deliver better satisfaction ratio (SR) than the fixed allocation schemes, in the context of provision of required bandwidth (or spectrum) for each users. Therefore, we conclude that the proposed DSA with priorities could apply to the maritime communication environment and exploit the under-used (or unused, idle) spectrum of terrestrial communication networks.

A Priority based Dynamic Spectrum Allocation Algorithm for Multiple Network Operators Supporting Multiple Service Classes (다중 서비스 클래스를 제공하는 네트워크 운영자를 위한 우선순위 기반의 동적 스펙트럼 할당 알고리즘)

  • Kim, Hoon;Joo, Yang-Ick;Yun, Sang-Boh;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.59-66
    • /
    • 2008
  • This paper presents a spectrum sharing and allocation problem in multiple network operators(NOs). Most of previous works as to dynamic spectrum allocation(DSA) schemes have presented the DSA gain achieved by utilizing the time or regional variations in traffic demand between multi-network operators(NOs). In this paper, we introduce the functionalities required for the entities related with the spectrum sharing and allocation and propose a spectrum allocation algorithm while considering the long-term priority(or fairness) between NOs, the prioritybetween multiple class services, and the urgent bandwidth request. It was shown that the proposed algorithm with priorities between multiple class services could sustain better satisfaction ratio(SR) than the fixed allocation schemes or one without priority under different traffic patterns. Therefore, we conclude that the proposed DSA with priorities between multiple class services and network operators could provide the fairness between service classes of network operators and effective negotiation procedure for urgent bandwidth request by users.

Dynamic Spectrum Allocation MAC Protocol based on Cognitive Radio for QoS Support (QoS 보장을 위한 Cognitive Radio 기반의 동적인 스펙트럼 할당 MAC 프로토콜)

  • Sun, Xianfeng;Joe, In-Whee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.155-159
    • /
    • 2008
  • 비능률적인 스펙트럼 이용률과 제한적인 스펙트럼 밴드 사용의 문제점을 해결하기 위하여, Cognitive Radio가 중요한 솔루션으로써 많은 연구가 진행되고 있다. 본 논문에서는 다중 채널 무선 네트워크에서의 QoS 보장을 위하여 Cognitive Radio 기반의 동적인 스펙트럼 할당 (Dynamic Spectrum Allocation)을 이용한 새로운 MAC 프로토콜을 제안한다. 사용자의 요청에 따라서, 유동적인 스펙트럼은 DSA 메커니즘을 통한 QoS 보장을 위하여 할당 된다. 그리고 동적인 스펙트럼 할당 (DSA)은 컨트롤 채널의 FRQ/FRP/ACK-hello와 데이터 채널의 DATA/ACK에 의하여 동작한다. 스펙트럼 공유의 성능을 증가시키기 위한 협력 검출 (Cooperative Detection)을 위하여, MAC 프로토콜에서는 Hello 메시지가 주기적으로 교환된다. 추가적으로, 성능 평가를 통하여 본 논문에서 제안한 DSA-MAC이 IEEE 802.11 MAC에 비하여 높은 데이터 처리량을 보임을 증명했다.

  • PDF

Spectrum Management Models for Cognitive Radios

  • Kaur, Prabhjot;Khosla, Arun;Uddin, Moin
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.222-227
    • /
    • 2013
  • This paper presents an analytical framework for dynamic spectrum allocation in cognitive radio networks. We propose a distributed queuing based Markovian model each for single channel and multiple channels access for a contending user. Knowledge about spectrum mobility is one of the most challenging problems in both these setups. To solve this, we consider probabilistic channel availability in case of licensed channel detection for single channel allocation, while variable data rates are considered using channel aggregation technique in the multiple channel access model. These models are designed for a centralized architecture to enable dynamic spectrum allocation and are compared on the basis of access latency and service duration.

A Generalized Markovian Based Framework for Dynamic Spectrum Access in Cognitive Radios

  • Muthumeenakshi, K.;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1532-1553
    • /
    • 2014
  • Radio spectrum is a precious resource and characterized by fixed allocation policy. However, a large portion of the allocated radio spectrum is underutilized. Conversely, the rapid development of ubiquitous wireless technologies increases the demand for radio spectrum. Cognitive Radio (CR) methodologies have been introduced as a promising approach in detecting the white spaces, allowing the unlicensed users to use the licensed spectrum thus realizing Dynamic Spectrum Access (DSA) in an effective manner. This paper proposes a generalized framework for DSA between the licensed (primary) and unlicensed (secondary) users based on Continuous Time Markov Chain (CTMC) model. We present a spectrum access scheme in the presence of sensing errors based on CTMC which aims to attain optimum spectrum access probabilities for the secondary users. The primary user occupancy is identified by spectrum sensing algorithms and the sensing errors are captured in the form of false alarm and mis-detection. Simulation results show the effectiveness of the proposed spectrum access scheme in terms of the throughput attained by the secondary users, throughput optimization using optimum access probabilities, probability of interference with increasing number of secondary users. The efficacy of the algorithm is analyzed for both imperfect spectrum sensing and perfect spectrum sensing.

Game Theory based Dynamic Spectrum Allocation for Secondary Users in the Cell Edge of Cognitive Radio Networks

  • Jang, Sungjin;Kim, Jongbae;Byun, Jungwon;Shin, Yongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2231-2245
    • /
    • 2014
  • Cognitive Radio (CR) has very promising potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in CR scenarios. This is particularly problematic for deploying CR in cellular networks, when users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse are critical requirements for both PUs and SUs. Further cellular networks require higher cell edge performance, then SUs will meet more challenges than PUs. To solve the performance decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as inter-cell interference mitigated according to SUs' sensing, measurement and interaction in this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge user experience and network performance through distributed pricing calculation and exchange based on game theory. Analytical proof is presented and simulation results show that the proposed scheme achieves high efficiency of spectrum usage and improvement of cell edge SUs' performance.