• Title/Summary/Keyword: dynamic programming

Search Result 952, Processing Time 0.168 seconds

Target Object Search Algorithm under Dynamic Programming in the Tree-Type Maze (Dynamic Programming을 적용한 트리구조 미로내의 목표물 탐색 알고리즘)

  • Lee Dong-Hoon;Yoon Han-Ul;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.626-631
    • /
    • 2005
  • This paper presents the target object search algorithm under dynamic programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved if the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using a real robot.

A Shortest Path Dynamic Programming for Expansion Sequencing Problems

  • Kim, Sheung-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.81-94
    • /
    • 1986
  • A shortest path dynamic programming formulation is proposed and attemped to solve an uncapacitated expansion sequencing problem. It is also compared with the Extended Binary State Space approach with total capacity. Difficulties and merits associated with the formulation are discussed. The shortest path dynamic programming lacks the separability condition and an optimal solution is not guaranteed. However it has other merits and seems to be the practical solution procedure for the expansion sequencing problem in a sense that it finds near optimal solution with less state evaluations.

  • PDF

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

SOME EXISTENCE THEOREMS FOR FUNCTIONAL EQUATIONS ARISING IN DYNAMIC PROGRAMMING

  • LIU ZEQING;UME JEONG SHEOK;KANG SHIN MIN
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.11-28
    • /
    • 2006
  • The existence, uniqueness and iterative approximation of solutions for a few classes of functional equations arising in dynamic programming of multistage decision processes are discussed. The results presented in this paper extend, improve and unify the results due to Bellman [2, 3], Bhakta-Choudhury [6], Bhakta-Mitra [7], and Liu [12].

COMMON FIXED POINT THEOREMS WITH APPLICATIONS TO THE SOLUTIONS OF FUNCTIONAL EQUATIONS ARISING IN DYNAMIC PROGRAMMING

  • Liu, Zeqing;Liu, Min;Kim, Hyeong-Kug;Kang, Shin-Min
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.67-83
    • /
    • 2009
  • Several common fixed point theorems for a few contractive type mappings in complete metric spaces are established. As applications, the existence and uniqueness of common solutions for certain systems of functional equations arising in dynamic programming are discussed.

OPTIMAL SHORT-TERM UNIT COMMITMENT FOR HYDROPOWER SYSTEMS USING DYNAMIC PROGRAMMING

  • Yi, Jae-eung
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.279-291
    • /
    • 2000
  • A mathematical model using dynamic programming approach is applied to an optimal unit commitment problem. In this study, the units are treated as stages instead of as state dimension, and the time dimension corresponds to the state dimension instead of stages. A considerable amount of computer time is saved as compared to the normal approach if there are many units in the basin. A case study on the Lower Colorado River Basin System is presented to demonstrate the capabilities of the optimal scheduling of hydropower units.

  • PDF

Routing and Collision Avoidance of Linear Motor based Transfer Systems using Online Dynamic Programming

  • Kim, Jeong-Tae;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.393-397
    • /
    • 2006
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using dynamic programming (DP). The proposed DP is accomplished online for determining optimal paths for each shuttle car. We apply our algorithm to Agile port terminal in USA.

  • PDF

A Study about Finding Optimal Path Using RAS Dynamic Programming (RAS Dynamic Programming을 이용한 최적 경로 탐색에 관한 연구)

  • Kim, Jeong-Tae;Lee, John-Tak;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1736-1737
    • /
    • 2007
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using random access sequence dynamic programming (RAS DP). The proposed RAS DP is accomplished online for determining optimal paths for each shuttle car.

  • PDF

COMBING EQUAL-LIFE MULTILEVEL INVESTMENTS USING FUZZY DYNAMIC PROGRAMMING

  • Kahraman, Cengiz;Ulukan, Ziya;Tolga, Ethem
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.347-351
    • /
    • 1998
  • Dynamic programming is applicable to any situation where items from several groups must be combined to form an entity, such as a composite investment or a transportation route connecting several districts. The most desirable entity is constructed in stages by forming sub-entities that are candidates for inclusion in the most desirable entity are retained, and all other sub-entities are discarded. In the paper, the fuzzy dynamic programming is applied to the situation where each investment in the set has the following characteristics : the amount to be invested has several possible values, and the rte of return varies with the amount invested. Each sum that may be invested represents a distinct level of investment , and the investment therefore has multiple levels. A numeric example constructing a combination of multilevel investments is given in the paper.

  • PDF

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.