• Title/Summary/Keyword: dynamic problem

Search Result 3,308, Processing Time 0.029 seconds

Dynamic Coordination Strategies between HVDC and STATCOM

  • Kim, Chan-Ki;Sood, Vijay;Lee, Seok-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.892-902
    • /
    • 2009
  • This paper deals with the dynamic voltage control problem at the inverter end of a HVDC link when connected to a weak AC system which has the potential for harmonic instability and commutation failures. The dynamic voltage control problem is tackled with a STATCOM (Static Compensator), which not only provides a rapid recovery from harmonic instability and commutation failures but also offers a lower cost filter design for HVDC systems. PSCAD/EMTDC simulations are presented to validate the proposed topology and to demonstrate its robust performance.

An Improved Algorithm for a Capacitated Dynamic Lot-Sizing Problem with Two-Stage Supply Chain (생산용량 제약하의 2 단계 공급체인에 대한 효율적인 롯사이징 알고리듬)

  • Hwang, Hark-Chin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.290-296
    • /
    • 2008
  • This paper considers a two-stage dynamic lot-sizing problem constrained by a supplier's production capacity. We derive an improved O($T^6$) algorithm over the O($T^7$) algorithm in van Hoesel et al. (2005).

  • PDF

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

NUMERICAL SOLUTION OF A KYNAMIC SHAPE CONTROL PROBLEM

  • Choi, Wan-Sik;Belbas, Stavros A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.275-278
    • /
    • 1995
  • In this paper, we consider a dynamic shape control problem with an example of controlling a flexible beam shape. Mathematical formulations are obtained by employing the Green's function approach. Necessary conditions for optimality are derived by considering the quadratic performance criteria. Numerical results for both of the dynamic and the static cases are obtained and compared.

  • PDF

A Dynamic Programming Approach to PCB Assembly Optimization for Surface Mounters

  • Park, Tae-Hyoung;Kim, Nam
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.192-199
    • /
    • 2007
  • This paper proposes a new printed circuit board (PCB) assembly planning method for multi-head surface mounters. We present an integer programming formulation for the optimization problem, and propose a heuristic method to solve the large NP-complete problem within a reasonable time. A dynamic programming technique is then applied to the feeder arrangement optimization and placement sequence optimization to reduce the overall assembly time. Comparative simulation results are finally presented to verify the usefulness of the proposed method.

Analysis of Mass Position Detection Using the Change of the Structural Dynamic Characteristics (동특성 변화로부터 구조물의 변경질량 위치 해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • This study proposed the analysis of mass position detection due to the change of the mass and strifeless of structure by using the original and modified dynamic characteristics. The method is applied to examples of the cantilevers beam and the 3 degrees of freedom system by modifying the mass. The predicted detection of the mass positions and magnitudes are in good agrement with the present study from the structural reanalysis using the modified mass.

A Survey on the Real Time Vehicle Routing Problems (실시간 차량 경로 계획 문제의 연구 동향)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.155-166
    • /
    • 2008
  • During last two decades the transportation system has developed into very intelligent system with GIS, GPS and ITS. The practical transportation management system provides real time response module to manage the customer's order. We have surveyed research papers on the real time vehicle routing problem in last two decades to figure out the dynamic vehicle routing problem. The papers are classified by basic routing algorithms and by managing the dynamic events which are the order management, the routing re-optimization, the routing post-optimization and the waiting strategy.

Fleet Sizing under Dynamic Vehicle Dispatching (동적 차량배차 환경에서의 차량 대수 결정)

  • Koo, Pyung-Hoi;Suh, Jungdae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.256-263
    • /
    • 2002
  • This paper addresses a planning problem in a pickup-delivery transportation' system under dynamic vehicle dispatching. We present a procedure to determine a fleet size in which stochastic characteristics of vehicle travels are considered. Statistical approach and queueing theory are applied to estimate vehicle travel time and vehicle waiting time, based on which an appropriate fleet size is determined. Simulation experiments are performed to verify the proposed procedure.

A Decentralized Coordination Algorithm for a Highly Dynamic Vehicle Routing Problem (동적 차량경로 문제에 대한 분산 알고리즘)

  • Okpoti, Evans Sowah;Jeong, In-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.116-125
    • /
    • 2019
  • The Dynamic Vehicle Routing Problem (DVRP) involves a combinatorial optimization problem where new customer demands become known over time, and old routes must be reconfigured to generate new routes while executing the current solution. We consider the high level of dynamism problem. An application of highly dynamic DVRP is the ambulance service where a patient contacts the service center, followed by an evaluation of case severity, and a visit by a practitioner/ ambulance is scheduled accordingly. This paper considers a variant of the DVRP and proposes a decentralized algorithm in which collaborators (Depot and Vehicle), both have only partial information about the entire system. The DVRP is modeled as a periodic re optimization of VRP using the proposed decentralized algorithm where collaborators exchange local information to achieve the best global objective for the current state of the system. We assume the existence of a dispatcher e.g., headquarter of the company who can communicate to vehicles in order to gather information and assigns the new visits to them. The effectiveness of the proposed decentralized coordination algorithm is further evaluated using benchmark data given in literature. The results show that the proposed method performed better than the compared algorithms which utilize the centralized coordination in 12 out of 21 benchmark problems.

Multiperiod Mean Absolute Deviation Uncertain Portfolio Selection

  • Zhang, Peng
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.63-76
    • /
    • 2016
  • Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practical investment decision-making problem. However, the existing literature on this field is almost undertaken by regarding security returns as random variables in the framework of probability theory. Different from these works, we assume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncertain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed algorithm.