• Title/Summary/Keyword: dynamic power consumption

Search Result 425, Processing Time 0.033 seconds

A Study on the new four-quadrant MOS analog multiplier using quarter-square technique

  • Kim, Won-U;Byeon, Gi-Ryang;Hwang, Ho-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.26-33
    • /
    • 2002
  • In this paper, a new four-quadrant MOS analog multiplier Is proposed using the quarter-square technique, which is based on the quadratic characteristics of MOS transistor operating in the saturation region and the difference operation of a source-coupled differential circuits. The proposed circuit has been fabricated in a p-well CMOS process. The multiplier achieves a total harmonic distortion of less than 1 percent for the both input ranges of 50 percent of power supply, a -3㏈ bandwidth of 30㎒ a dynamic range of 81㏈ and a power consumption of 40㎽. The active chip area is 0.54㎟. The supposed multiplier circuit is simple and adjust high frequency application because one input signal transfer output by one transistor.

Comparison of Test Standards for the Performance and Safety of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Shin, Sung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.158-165
    • /
    • 2014
  • Purpose: The objective of this paper was to compare test standards regarding the performance and safety of agricultural tractors to identify the differences in test conditions, measurement tolerances, and test procedures. Based on the comparison, some recommendations were proposed for possible revisions or improvements to current tractor test standards. Methods: The test standards and codes of major standards development organizations (SDOs), such as the Organization for Economic Cooperation and Development (OECD), the International Organization for Standardization (ISO), the American Society of Agricultural and Biological Engineers (ASABE), EC type approval, and the board of actions of the Nebraska Tractor Test Laboratories (NTTL), were selected and analyzed. Comparison of the test standards: The ISO provides references for fuel and lubricants for tractor tests, and the OECD provides additional measurements for calculating fuel consumption characteristics during the power take-off (PTO) tests. The ISO, EC type approval, and the ASABE provide PTO protective device and the safety requirements. During drawbar power tests, seven transmission ratios are selected for fully automatic transmissions, according to the OECD. In case of hydraulic lift tests, ISO 789-2 and OECD Code 2 advise the use of a static lift force, while SAE J283 advises the use of additional dynamic lift capacity tests for a better representation of in-field operations. The OECD, the ISO, and EC type approval determine the seat index point (SIP), whereas the ASABE determines the seat reference point (SRP) for roll-over protective structure (ROPS) tests. Diversified measurement tolerances were among the braking performance test standards. The European Union (EU) has developed daily limits for vibration exposures with adaptations from ISO 2631-1. Electromagnetic compatibility evaluations are emerging of high-efficiency tractors due to the long-term conformance to electromagnetic emissions and interferences. Comparisons of tractor test standards discussed in this paper are expected to provide useful information for tractor manufacturers and standards development personnel to improve the performance and safety test standards of tractors.

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

A PLL Based 32MHz~1GHz Wide Band Clock Generator Circuit for High Speed Microprocessors (PLL을 이용한 고속 마이크로프로세서용 32MHz~1GHz 광대역 클럭발생회로)

  • Kim, Sang-Kyu;Lee, Jae-Hyung;Lee, Soo-Hyung;Chung, Kang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.235-244
    • /
    • 2000
  • This paper presents a low power PLL based clock geneator circuit for microprocessors. It generates 32MHz${\sim}$1GHz clocks and can be integrated inside microprocessor chips. A high speed D Flip-Flop is designed using dynamic differential latch and a new Phase Frequency Detector(PFD) based on this FF is presented. The PFD enjoys low error characteristics in phase sensitivity and the PLL using this PFD has a low phase error. To improve the linearity of voltage controlled oscillator(VCO) in PLL, the voltage to current converter and current controlled oscillator combination is suggested. The resulting PLL provides wide lock range and extends frequency of generated clocks over 1 GHz. The clock generator is designed by using $0.65\;{\mu}m$ CMOS full custom technology and operates with $11\;{\mu}s$ lock-in time. The power consumption is less than 20mW.

  • PDF

Flash memory system with spatial smart buffer for the substitution of a hard-disk (하드디스크 대용을 위한 공간적 스마트 버퍼 플래시 메모리 시스템)

  • Jung, Bo-Sung;Jung, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • Flash memory has become increasingly requestion for the importance and the demand as a storage due to its low power consumption, cheap prices and large capacity medium. This research is to design a high performance flash memory structure for the substitution of a hard-disk by dynamic prefetching of aggressive spatial locality from the spatial smart buffer system. The proposed buffer system in a NAND flash memory consists of three parts, i.e., a fully associative victim buffer for temporal locality, a fully associative spatial buffer for spatial locality, and a dynamic fetching unit. We proposed new dynamic prefetching algorithm for aggressive spatial locality. That is to use the flash memory instead of the hard disk, the proposed flash system can achieve better performance gain by overcoming many drawbacks of the flash memory by the new structure and the new algorithm. According to the simulation results, compared with the smart buffer system, the average miss ratio is reduced about 26% for Mediabench applications. The average memory access times are improved about 35% for Mediabench applications, over 30% for Spec2000 applications.

Low Power Implementation of Integrated Cryptographic Engine for Smart Cards (스마트카드 적용을 위한 저전력 통합 암호화 엔진의 설계)

  • Kim, Yong-Hee;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.80-88
    • /
    • 2008
  • In this paper, the block cipher algorithms, 3-DES(Triple Data Encryption Standard), AES(Advanced Encryption Standard), SEED, HASH(SHA-1), which are domestic and international standards, have been implemented as an integrated cryptographic engine for smart card applications. For small area and low power design which are essential requirements for portable devices, arithmetic resources are shared for iteration steps in each algorithm, and a two-level clock gating technique was used to reduce the dynamic power consumption. The integrated cryptographic engine was verified with ALTERA Excalbur EPXA10F1020C device, requiring 7,729 LEs(Logic Elements) and 512 Bytes ROM, and its maximum clock speed was 24.83 MHz. When designed by using Samsung 0.18 um STD130 standard cell library, the engine consisted of 44,452 gates and had up to 50 MHz operation clock speed. It was estimated to consume 2.96 mW, 3.03 mW, 2.63 mW, 7.06 mW power at 3-DES, AES, SEED, SHA-1 modes respectively when operating at 25 MHz clock. We found that it has better area-power optimized structure than other existing designs for smart cards and various embedded security systems.

An Implementation of Low Power MAC using Improvement of Multiply/Subtract Operation Method and PTL Circuit Design Methodology (승/감산 연산방법의 개선 및 PTL회로설계 기법을 이용한 저전력 MAC의 구현)

  • Sim, Gi-Hak;O, Ik-Gyun;Hong, Sang-Min;Yu, Beom-Seon;Lee, Gi-Yeong;Jo, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.60-70
    • /
    • 2000
  • An 8$\times$8+20-bit MAC is designed with low power design methodologies at each of the system design levels. At algorithm level, a new method for multipl $y_tract operation is proposed, and it saves the transistor counts over conventional methods in hardware realization. A new Booth selector circuit using NMOS pass-transistor logic is also proposed at circuit level. It is superior to other circuits designed by CMOS in power-delay-product. And at architecture level, we adopted an ELM adder that is known to be the most efficient in power consumption, operating frequency, area and design regularity as the final adder. For registers, dynamic CMOS single-edge triggered flip-flops are used because they need less transistors per bit. To increase the operating frequency 2-stage pipeline architecture is adopted, and fast 4:2 compressors are applied in Wallace tree block. As a simulation result, the designed MAC in 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS process is operated at 200MHz, 3.3V and consumed 35㎽ of power in multiply operation, and operated at 100MHz consuming 29㎽ in MAC operations, respectively.ly.

  • PDF

A 12Bit 80MHz CMOS D/A Converter with active load inverter switch driver (능동부하 스위치 구동 회로를 이용한 12비트 80MHz CMOS D/A 변환기 설계)

  • Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes a 12 bit 80MHz CMOS D/A converter for wireless transceiver. Proposed circuit in the paper employes segmented structure which consists of four stage 3bit thermometer decoders. Proposed D/A converter is manufactured 0.35um CMOS n-well digital standard process and measurement results show a ${\pm}1.36SB/{\pm}0.62LSB$ of INL/DNL and $46pV{\cdot}s$ of glitch energy. SNR and SFDR are measured to be 58.5dB and 64.97dB @ Fs=80MHz and Fin=19MHz with a total power consumption of 99mW. Such results proved that our work has low power consumption, high linearity, low glitch and improved dynamic performance. Therefore, our work can be appled to various high speed and high performance circuits.

Analysis of Performance, Energy-efficiency and Temperature for 3D Multi-core Processors according to Floorplan Methods (플로어플랜 기법에 따른 3차원 멀티코어 프로세서의 성능, 전력효율성, 온도 분석)

  • Choi, Hong-Jun;Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.265-274
    • /
    • 2010
  • As the process technology scales down and integration densities continue to increase, interconnection has become one of the most important factors in performance of recent multi-core processors. Recently, to reduce the delay due to interconnection, 3D architecture has been adopted in designing multi-core processors. In 3D multi-core processors, multiple cores are stacked vertically and each core on different layers are connected by direct vertical TSVs(through-silicon vias). Compared to 2D multi-core architecture, 3D multi-core architecture reduces wire length significantly, leading to decreased interconnection delay and lower power consumption. Despite the benefits mentioned above, 3D design technique cannot be practical without proper solutions for hotspots due to high temperature. In this paper, we propose three floorplan schemes for reducing the peak temperature in 3D multi-core processors. According to our simulation results, the proposed floorplan schemes are expected to mitigate the thermal problems of 3D multi-core processors efficiently, resulting in improved reliability. Moreover, processor performance improves by reducing the performance degradation due to DTM techniques. Power consumption also can be reduced by decreased temperature and reduced execution time.