• Title/Summary/Keyword: dynamic moment

Search Result 861, Processing Time 0.024 seconds

Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers

  • Ali Mohammad Rousta
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • The use of steel pipe dampers (SPD) as fuses or interchangeable elements in the steel moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of steel pipe dampers in MRF has been investigated. Evaluation of MRF with and without SPD models were performed using the finite element method by ABAQUS. For validation, an MRF and MRF with steel pipe dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3, 6, and 9 stories was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, steel pipe dampers should be used to perform properly against earthquakes. The installation of steel pipe dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Improved seismic performance of steel moment frames using rotational friction dampers

  • Ali Banazadeh;Ahmad Maleki;Mohammad Ali Lotfollahi Yaghin
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.223-234
    • /
    • 2023
  • The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF

Yaw Moment Control Algorithm based on Estimated Vehicle Mass for Manual-Shift Commercial Vehicles (질량 추정기 기반 수동 변속 상용차용 요 모멘트 제어 알고리즘)

  • Kim, Jayu;Cha, Hyunsoo;Park, Kwanwoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2022
  • This paper presents a yaw moment control based on estimated mass for manual-shift commercial vehicles. In yaw moment controller, parameter uncertantiy of vehicle mass is important because the desired yaw moment depends on vehicle parameter. However, in the case of commercial vehicle, the weight of the loaded vehicle is more than twice as much as compared to the unloaded vehicle. The proposed algorithm estimates the vehicle mass by using the longitudinal dynamic and gear shifting characteristics. The estimated mass is used to adaptively modify the vehicle parameters. In addition, this paper estimates the chamber pressure of a pneumatic brake and generates the target yaw moment through on/off valve control. MATLAB/Simulink and Trucksim were performed under sine with dwell test. The results demonstrate that the proposed algorithm improves the lateral and rollover stability.

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment

  • Ngo, Van-Linh;Kim, Jae-Min;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2019
  • This paper illustrates the results of a series of seismic geotechnical centrifuge experiments to explore dynamic structure-soil-structure interaction (SSSI) of two structures (named S1 and S2) installed on ground surface. A dense homogeneous ground is prepared in an equivalent shear beam (ESB) container. Two structural models are designed to elicit soil-foundation-structure interaction (SFSI) with different masses, heights, and dynamic characteristics. Five experimental tests are carried out for: (1) two reference responses of the two structures and (2) the response of two structures closely located at three ranges of distance. It is found that differential settlements of both structures increase and the smaller structure (S2) inversely rotates out of the other (S1) when they interact with each other. S2 structure experiences less settlement and uplift when at a close distance to the S1 structure. Furthermore, the S1 structure, which is larger one, shows a larger rocking and a smaller sliding response due to the SSSI effects, while S2 structure tends to slide more than that in the reference test, which is illustrated by an increase in sliding response and rocking stiffness as well as a decrease in moment-to-shear ratio (M/H·L) of the S2 structure.

Nonlinear Seismic Analysis of U-Shaped Cantilever Retaining Structures

  • Sadiq, Shamsher;Park, Duhee;Yoo, Jinkwon;Yoon, Jinam;Kim, Juhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.27-33
    • /
    • 2017
  • Nonlinear dynamic analysis is performed to calculate the response of U-shaped cantilever retaining structure under seismic loading using the finite element (FE) analysis program OpenSees. A particular interest of the study is to evaluate whether the moment demand in the cantilever can be accurately predicted, because it is an important component in the seismic design. The numerical model is validated against a centrifuge test that was performed on cantilever walls with dry medium dense sand in backfill. Seismic analysis is performed using the pressure-dependent, multi-yield-surface, plasticity based soil constitutive model implemented in OpenSees. Normal springs are used to simulate the soil-structure interface. Comparison with centrifuge show that FE analysis provides good estimates of both the acceleration response and bending moment. The lateral earth pressure near the bottom of the wall is overestimated in the numerical model, but this does not contribute to a higher prediction of the moment.

Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses

  • Kaloop, Mosbeh R.;Son, Hong Min;Sim, Hyoung-Bo;Kim, Dongwook;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • This study aims at evaluating composite moment frame structures (CFS) using wavelet analysis of the displacement behavior of these structures. Five seismic damage mitigation systems' models of 9-story CFS are examined namely, basic (Model 1), reinforced (Model 2), buckling restrained braced (BRB) (Model 3), lead rubber bearing (LRB) (Model 4), and composite (Model 5) moment frames. A novel integration between continuous and discrete wavelet transforms is designed to estimate the wavelet power energy and variance of measurements' behaviors. The behaviors of the designed models are evaluated under influence of four seismic loads to study the dynamic performance of CFS in the frequency domain. The results show the behaviors of models 3 and 5 are lower than other models in terms of displacement and frequency performances. Model 3 has been shown lower performances in terms of energy and variance wavelets along the monitoring time; therefore, Model 3 demonstrates superior performance and low probability of failure under seismic loads. Furthermore, the wavelet variance analysis is shown a powerful tool that can be used to assess the CFS under seismic hazards.

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.