• Title/Summary/Keyword: dynamic modification

Search Result 489, Processing Time 0.031 seconds

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

Modification of the integer transform in H.264/AVC for lossless compression (무손실 압축을 위한 H.264/AVC 정수 변환의 변형)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2254-2260
    • /
    • 2010
  • This papers describes modification of the integer transform used in H.264/AVC in order to efficiently apply to lossless compression. The previous reversible integer transform is not efficient for lossless compression due to large dynamic range of the transform coefficients. To reduce the problem, efficient and reversible integer transforms are proposed. The modified transforms are designed based on the lifting scheme for fast transforms. This paper introduces signal flow graphs for the proposed fast transforms and provides corresponding experimental results. The results indicate that the proposed modified reversible integer transform are superior to the previous transform in terms of lossless compression efficiency.

Development of Anti-fluttering Tilting Pad Journal Bearing with the Shape Modification of Upper Pad (상부패드의 형상 변경을 통한 'Anti-fluttering 틸팅패드 저널베어링' 개발)

  • Yang, Seong Heon;Nah, Un Hak;Park, Heui Joo;Kim, Chaesil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.35-45
    • /
    • 2005
  • The tilting pad journal bearings have been widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unloaded pads and the break of locking pins etc. by pad fluttering are continuously taken place in the actual steam turbines. The purpose of this paper is to develop a new bearing model that can prevent bearing problems effectively by pad fluttering in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of fluttering mechanism performed by previously research works. The fluttering characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad fluttering nearly does not occurred in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad fluttering does not detect in the application of acture steam turbines.

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

A study on the improvement of the accuracy of fishing trawlers maneuverability estimation at the design stage (설계단계에서의 트롤어선 조종성능 추정 정확성 향상에 대한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki;LEE, Min-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.374-383
    • /
    • 2020
  • At ship design stage, the maneuverability is generally estimated based on the empirical formula or the computational fluid dynamic (CFD), which is one of the numerical simulation methods. Using the hydrodynamic derivatives derived through these methods can quantitatively estimate the maneuverability of target vessels and evaluate indirect maneuverability. Nevertheless, research on estimating maneuverability is insufficient for ships not subject to IMO maneuverability standard, especially fishing vessels, and even at the design stage, the empirical formula developed for merchant ships is applied without modification. An estimation error may occur due to the empirical formula derived from the regression analysis results of a model test if the empirical formula developed for merchant ships with different hull shapes is applied to fishing vessels without any modification. In this study, the modified empirical formula that can more accurately estimate the fishing vessel's maneuverability was derived by including the hull shape parameter of target fishing trawlers in the regression analysis process that derives Kijima et al. (1990) formula. As a result, the modified empirical formula showed an average estimation error of 6%, and the result improved the average error of 49% of Kijima et al. (1990) formula developed for merchant ships.

Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter (유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화)

  • Kim, Yong-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique (부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경)

  • 이준호;정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

Chemical Modification of Carbon Nanotubes and Preparation of Polystyrene/Carbon Nanotubes Composites

  • Ham, Hyeong-Taek;Koo, Chong-Min;Kim, Sang-Ouk;Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.384-390
    • /
    • 2004
  • Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3:1 mixture of concentrated sulfuric acid and nitric acid. During these purification and cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octa-decylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The cut SWNTs did not disperse in organic solvents, but the octadecylamine-grafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or polystyrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.

Performance Enhancement of RMRAC Controller for Permanent Magnet Synchronous Motor using Disturbance Observer (외란관측기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응 제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • PMSM (Permanent Magnet Synchronous Motor) current control is a most inner loop of electromechanical driving systems and it plays a foundation role in the hierarchy's control loop of several mechanical machine systems. In this paper, a simple RMRAC control scheme for the PMSM is proposed in the synchronous frame. In the synchronous current model, the input signal is composed of as a calculated voltage by adaptive laws and system disturbances. The gains of feed-forward and feed-back controller are estimated by the proposed e-modification methods respectively, where the disturbances are assumed as filtered current tracking errors. After the estimation of the disturbances from the tracking errors, the corresponding voltage is fed forward to control input to compensate for the disturbances. The proposed method is robust to high frequency disturbances and has a fast dynamic response to time varying reference current trajectory. It also shows a good real-time performance duo to it's simplicity of control structure. Through the simulations considering several cases of external disturbances and experimental results, efficiency of the proposed method is verified

  • PDF

Static and Dynamic Analyses of Bending Problems Using 3-Dimensional 10-Node Equivalent Element (3차원 10절점-상당요소에 의한 굽힘문제의 정적.동적해석)

  • 권영두;윤태혁
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.117-130
    • /
    • 1997
  • In this paper, a modified 10-node equivalent solid element(MQM10 element), which has smallest degrees of freedom among 3-dimensional solid elements accounting bending deformation as well as extensional and shear deformations of isotropic plates, is proposed. The proposed MQM10 element exhibits stiffer bending stiffness due to the reduction of degrees of freedom from 20-node element or Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon, the modification equation of Gauss sampling points is proposed. The quantity of modification is a function of Poisson's ratio. The effectiveness of MQM10 element is tested by applying it to several examples. It is noted that the results of static and free vibration analysis of isotropic plates using MQM10 elements show a good agreement with those using 20-node element.

  • PDF