• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.026 seconds

Analysis of Dynamics Characteristics and Design of vibrating Table for Expendable Pattern Casting Process (소실모형주조용 진동장치의 동특성 분석 및 설계)

  • 이은경;설진수;임경화;이경환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.269-274
    • /
    • 2003
  • Vibration table is required to obtain high packing density in expendable pattern casting process. Packing density, which is an important manufacture factor, depends on the vibration pattern induced by vibration table. Modal test is utilized to identify the dynamic characteristics of vibration table. And finite element method is used to modify flask by fixing the stiffener. The positions of stiffener to modify are found and the natural frequency could be easily shifted to the objective value by using sensitivity analysis.

  • PDF

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part II: earthquake acting along the bridge axis

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.39-54
    • /
    • 2010
  • In this paper, a simple approach is presented for studying the dynamic response of multi-span steel bridges supported by pylons of different heights, subjected to earthquake motions acting along the axis of the bridge with spatial variations. The analysis is carried out using the modal analysis technique, while the solution of the integral-differential equations derived is obtained using the successive approximations technique. It was found that the height of piers and the quality of the foundation soil can affect significantly the dynamical behavior of the bridges studied. Illustrative examples are presented to highlight the points of concern and useful conclusions are gathered.

Comparison Study on Structural Dynamic Modelings Employing Single Reference Frame (단일 기준 틀을 사용한 구조 동역학 모델링 비교 연구)

  • Kim, Jung-Min;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.834-839
    • /
    • 2004
  • In this paper, modeling methods for the structural dynamic analysis employing single reference frame are presented and their modal and transient analysis results are compared. The geometric stiffening effects often occur when structures undergo large overall motion. These effects were considered in several structural previous modeling methods but the role of reference frame has never been scrutinized. In this study, modeling methods employing single reference frame are presented, and their numerical results are compared. The results show that discrepancy between the two modeling methods increases as the eccentricity of the structural system and the magnitude of the large overall motion increase.

  • PDF

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

Analytical Evaluation of Rotor Dynamic Characteristic of Roots Type Vacuum Pump (루츠타입 진공펌프 동특성의 해석적 평가)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Ha, Jeong-Min;Gu, Dong-Sik;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1112-1119
    • /
    • 2011
  • The goal of this study is the stability evaluation of a vacuum pump through modal test and rotor dynamics. Roots type vacuum pump, which is a dry vacuum pump, is necessary for the manufacturing process of the semiconductor and the display. Eigenvalue was solved by the finite-element method(FEM) using 2D and 3D models, then the modal test result was compared with the FEM result. According to the comparison, the analysis result using the 2D was more accurate than the 3D model. Therefore, rotor dynamics was performed by the 2D model. Campbell diagram and root-locus maps, which were calculated by complex-eigenvalue analysis, were used to evaluate the stability of the rotors of the vacuum pump. And displacement solved by unbalance response analysis was compared with the minimum clearance between two rotors of the vacuum pump. Thus, the vacuum pump is assumed operated under steady state through the evaluation of the rotor dynamics.

Numerical Analysis of Hydrodynamic Characteristics for Various Types of Jack-up Legs (다양한 형상의 Jack-up Leg에 대한 해양 동역학적 수치해석)

  • Kim, Ji-Seok;Park, Min-Su;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.371-377
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of various types of jack-up legs for a wind turbine installation vessel were analyzed. Using the modified Morison equation, the wave and current excitation forces on the jack-up legs were calculated. A modal analysis was performed to predict the dynamic responses for various types of jack-up legs. The Newmark-beta time integration scheme was used to solve the equation of motion in waves in the time domain. The maximum displacement and maximum bending stress were computed for four different types of legs, and their results were compared to select an optimum leg type. Finally, a six-leg jack-up rig with the selected optimal legs was modeled, and its natural period and hydrodynamic behaviors were evaluated.

SSA-based stochastic subspace identification of structures from output-only vibration measurements

  • Loh, Chin-Hsiung;Liu, Yi-Cheng;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.331-351
    • /
    • 2012
  • In this study an output-only system identification technique for civil structures under ambient vibrations is carried out, mainly focused on using the Stochastic Subspace Identification (SSI) based algorithms. A newly developed signal processing technique, called Singular Spectrum Analysis (SSA), capable to smooth a noisy signal, is adopted for preprocessing the measurement data. An SSA-based SSI algorithm with the aim of finding accurate and true modal parameters is developed through stabilization diagram which is constructed by plotting the identified system poles with increasing the size of data matrix. First, comparative study between different approaches, with and without using SSA to pre-process the data, on determining the model order and selecting the true system poles is examined in this study through numerical simulation. Finally, application of the proposed system identification task to the real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures, using SSA-based SSI algorithm is carried out to extract the dynamic characteristics of the tower from output-only measurements.

Mode Truncation Method in Frequency Response Analysis (주파수 응답해석의 모드 축약법)

  • Cho, Tae-Min;Lee, Eun-Kyoung;Seo, Hwa-Il;Rim, Kyung-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2002
  • In the frequency response analysis using a modal method, it is very important to determine the number of modes involved with the formulation of a frequency response function. Most engineers are inclined to determine mode truncation with their experience. But it is difficult for non-experts to decide the mode truncation reasonably in many problems of dynamic analyses. In this study, fuzzy theory is used to standardize the empirical determination of mode truncation so that not only the experts but also non-experts can decide a Proper mode truncation easily. Fuzzy rule base is based on the simulation results using finite element method. Numerical simulations show that the developed mode truncation method is a very effective method to choose the number of the considered modes.

Reduction of Vibration and Shock in an HDD Car-holder (차량용 HDD 거치대의 진동/충격 저감)

  • Im, Hyung-Bin;Park, Ki-Sun;Kim, Doo-Hwan;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1192-1198
    • /
    • 2008
  • In this paper, the vibration and shock of an HDD car-holder are reduced through vibration analysis and a structural modification. In order to identify the exciting frequency components of vibration and shock, vibration signals are measured and analyzed from the wind shield or dashboard. In addition, the modal test for the current HDD car-holder is performed to investigate the dynamic characteristics of the car-holder. From these experiments, it is found that the exciting frequencies coincide to the natural frequencies of the car-holder. For the purpose of avoiding resonance, some FEM simulations are carried out and then structural modifications are made for the car-holder. Based on the results of simulations, a prototype of new car-holder are manufactured and tested to demonstrate the reduction of vibration and shock. It is verified by the test that a considerable amount of vibration and shock are reduced.

Nonlinear Transonic Flutter Analysis of a Composite Fin Considering Delamination Effect (층간분리 효과를 고려한 복합재 핀의 비선형 천음속 플러터 해석)

  • Gwang Young Lee;Ki-Ha Kim;Dong-Hyun Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.82-93
    • /
    • 2023
  • In this paper, nonlinear transonic flutter analyses of a composite missile fin considering the effect of delamination are conducted. An effective modal analysis methodology is adopted and verified with the experimental modal test data for laminated composite plates with delamination. Extended version of the in-house computational aeroelastic analysis program with the transonic small-disturbance (TSD) code is used in order to predict the flutter dynamic pressure of the delaminated composite fin models. In the subsonic, transonic, and supersonic flow regions, nonlinear time-domain flutter analyses are performed for various delamination conditions, and aeroelastic characteristics due to the delamination phenomena are examined in detail.