• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.027 seconds

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

An Analysis of Dynamic Characteristics of Bolted Lap Joints with Viscoelastic Layers (점탄성재 삽입시 볼트랩 죠인트의 동특성 해석)

  • 박명균;박세만;최영식;박상규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.172-178
    • /
    • 2003
  • Two types of bolted lap joints, one with a viscoelastic layer and the other without the viscoelastic layer were chosen to analyze the dynamic characteristics of the joints with the mechanical properties of the bolts in the joints are considered as computational variables. The finite element method was used along with the modal testing to verify the PEM model. The results in the bolted lap joints reveal that the higher the Young's modulus for the bolts we use the higher the natural frequencies we obtain fur the joints. However, the natural frequency differences in the first and second mode are not substantial but become noticeable in the higher modes. Lower natural frequencies were obtained for the bolted lap joints with the viscoelastic layer when compared with those of the bolted lap joints without the viscoelastic layer. And the differences in the natural frequencies for the two types of joints are relatively small in the first and second mode whereas in the higher mode the differences become significant. The loss factors were observed to be significant especially in the second mode for the bolted lap joints with the viscoelastic layer.

Analyses of structural dynamic characteristics and end milling in a vertical machining center (금형 가공기의 엔드밀 가공 및 구조 동특성 해석)

  • 이신영;김성걸;이장무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1997
  • In a high speed and high precision vertical machining center, chatter vibration is easily generated due to unbalanced masses in rotating parts and changtes of cutting forces. In this paper, modal test is performed to obtain modal parameters of the vertical machining center. In order to predit the cutting force of endmilling process for various cutting conditions, a mathematical model is given and this model is based on chip load, cutting geometry, and relationship between cutting forces and the chip load. Specific cutting constants of the model are obtained by averaging forces of cutting tests. The interactions between the dy- namic characteristics and cutting dynamics of the vertical machining center make the primary and the secondary feedback loops, and we make use of the equations of system to predict the chatter vibration. The chatter prediction is formulated as linear differential-differene equations, and simulated for several cases. Trends of vibration as radial and axial depths of cut are changed are shown and compared.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Comparison of Approximate Nonlinear Methods for Incremental Dynamic Analysis of Seismic Performance (내진성능의 증분동적해석을 위한 비선형 약산법의 비교 검토)

  • Bae, Kyeong-Geun;Yu, Myeong-Hwa;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • Seismic performance evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Incremental Dynamic Analysis(IDA) is a analysis method that has recently emerged to estimate structural performance under earthquakes. This method can obtained the entire range of structural performance from the linear elastic stage to yielding and finally collapse by subjecting the structure to increasing levels of ground acceleration. Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. The uncoupled modal response history analysis(UMRHA) is a method which can find the nonlinear reponse of the structures for ESDF from the pushover curve using NRHA or response spectrum. The direct spectrum analysis(DSA) is approximate nonlinear method to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. In this study, the practicality and the reliability of seismic performance of approximate nonlinear methods for incremental dynamic analysis of mixed building structures are to be compared.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

FSI Analysis of TLP Tether System for Floating Wind Turbine

  • Chen, Zheng-Shou;Kim, Wu-Joan;Yoo, Jae-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 2010
  • ANSYS multi-physics software was applied to solve the coupled dynamic problem related to a full-scale TLP foundation for floating wind turbines. In this coupled dynamics simulation, the forced oscillation imposed on the tethers' top resulting from the sway of the wind turbine platform and the self-excited vortex-induced vibration (VIV) along the tether span have been taken into account. The stability of this tensioned tether system has been validated in the form of separate static and dynamic analyses. The dynamic characteristics of the tensioned tether linked to the floating wind turbine were analyzed by the resultant modal form and its corresponding vortex shedding pattern. The calculated result shows that even a slight forced oscillation imposed on the tethers' top leads to the VIV amplification and enhances the risk of instability in the case of low pretension. It is also found that the "synchronization" would be aggravated when the top tension decreases and the "2P" vortex shedding mode takes place. The increased top tension imposed on the tethers contributes to the stability of the tensioned legs by diminishing the oscillation amplitude markedly.

Prediction of the Dynamic Characteristics of a Bolt-Joint Plates According to Bolting Conditions (볼트 체결 조건에 따른 두 판재의 동적 특성 예측)

  • Hong Sang-joon;Lee DongJin;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1175-1182
    • /
    • 2005
  • General systems have many substructures assembled at joints. The bolted joint is generally used in assembling the mechanical parts. However, there are no effective modeling methods to analyze the dynamic characteristics of bolt jointed structure using the finite element (FE) analysis, especially in case of large area contact. Moreover, the design methods for the appropriate bolt locations and the number of bolts considering the dynamic characteristics are not guided properly. In this study, a proper modeling method is developed to simulate the dynamic characteristics of a structure with the large interfaced area using the cone frusta method and spring elements. The natural frequencies are also controlled by adjusting the bolt-joint location and the number of bolts considering relative distances in mode shapes at the interface of bolt-jointed plates. The Modeling method and the optimized design method are verified based on the experimental and the FE analysis results.

A Study on the Static/Dynamic Stability and the Fatigue Damages for the Worm Gear in the B-Axis Rotary Table of a Mill Turret (복합공구대용 B축 회전테이블 웜 기어의 정/동적 안정성 및 피로에 관한 연구)

  • Kim, Chae-Sil;Kang, Seung-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.107-115
    • /
    • 2014
  • Highly functional mill turrets have been developed and continuously improved to shorten the manufacturing time and enable multiple uses. Among these, a mill turret with B-axis rotary table was developed. The B-axis rotary table should be evaluated for structural integrity. Moreover, its worm and worm gear for transmitting power should be able to endure fatigue damage. Therefore, this article presents a structural analysis of this type of B-axis rotary table and confirms its static stability by comparing the stress results to the allowable stress levels. Next, the dynamic stability of the rotary table was investigated via a mode analysis and a harmonic analysis in a range determined by the results of a modal analysis. Finally, a worm gear set, the main part that drives the rotary table, is analyzed for fatigue and to estimate its lifetime. The results of the fatigue analysis allowed a prediction of the life of the worm gear set. The analytical results show that the B-axis rotary table has good structural integrity.