• Title/Summary/Keyword: dynamic memory theory

Search Result 40, Processing Time 0.026 seconds

Implementation of Impedance Matching Circuit for ATE (고속 ATE 시스템을 위한 임피던스 정합회로 구현)

  • Kim, Jong-Won;Seo, Yong-Bae;Lee, Yong-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.17-22
    • /
    • 2006
  • In the manufacturing processes of semiconductor, test process is important for quality of products. In the manufacturing process of dynamic memory, memory test is more important. So, automatic test equipment(ATE) is used necessarily. But, according to increase of speed of dynamic memory operation, the rapid test equipment is needed. Impedance matching between ATE and dynamic memory is expected to be an important problem for making a rapid test equipment over 1Gbps. According to increase of speed, inner impedance of ATE also works on important parameter for test. This paper is about the method that is for impedance matching of inner impedance and coaxial cable occurring in manufacturing of ATE. We proved effects of inner impedance by electric theory and verified the method of impedance matching using computer simulation.

  • PDF

Thermo-mechanical Characteristics of High Temperature NITINOL Shape Memory Alloy (고온용 NITINOL 형상기억합금의 열적/기계적 특성 평가)

  • Yun, Seong-Ho;Sridhar Krishnan;Scott R. White
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.52-59
    • /
    • 2002
  • The thermo-mechanical characteristics of high temperature NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the phase transformation temperatures were in the range of 50~11$0^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

Thermoelectric viscoelastic materials with memory-dependent derivative

  • Ezzat, Magdy A.;El Karamany, Ahmed S.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.539-551
    • /
    • 2017
  • A mathematical model of electro-thermoelasticity has been constructed in the context of a new consideration of heat conduction with memory-dependent derivative. The governing coupled equations with time-delay and kernel function, which can be chosen freely according to the necessity of applications, are applied to several concrete problems. The exact solutions for all fields are obtained in the Laplace transform domain for each problem. According to the numerical results and its graphs, conclusion about the proposed model has been constructed. The predictions of the theory are discussed and compared with dynamic classical coupled theory. The result provides a motivation to investigate conducting thermoelectric viscoelastic materials as a new class of applicable materials.

Evaluation of Thermomechanical Characteristics of NITINOL Shape Memory Alloy (NITINOL 형상기억합금의 열적/기계적 특성 평가)

  • ;Sridhar Krishnan;Scott R. White
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.683-686
    • /
    • 2001
  • The thermomechanical characteristics of NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the austenite finish temperature was in the range of $50~100^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

  • PDF

A Study on How to Apply GBS (Goal-Based Scenario) to 'Ecology & Environment' Education in High School (GBS(Goal-Based Scenario)에 의한 수업 개발 및 적용 방안 연구: 고등학교 '생태와 환경' 수업 사례 중심으로)

  • Kang, In-Ae;Lee, Myong-Soon
    • Hwankyungkyoyuk
    • /
    • v.21 no.4
    • /
    • pp.94-110
    • /
    • 2008
  • Recently environmental problem becomes such a big issue all over the world that the necessity and importance of the environmental education in school has been simultaneously emphasized. While diverse methods for the environmental education have been researched, this paper, especially focused on a teaching-learning model called GBS (Goal-based scenario), aims to provide a new learner-centered approach for the environmental education. For this purpose, this paper first briefly presents two theoretical backgrounds of GBS (i.e., constructivism and Schank's dynamic memory theory), which is followed by specific and concrete strategies and methods of how to apply GBS in class for the teacher. GBS(Goal-Based Scenario) is a learner-centered model in which learners are presented with a reality-based scenario (or task or problem) and go through several stages of 'missions' to get to a final solution of the given scenario. GBS, while completely resonant with other constructivist learning models in terms of learner-centered approaches, is distinctive from others, when it supplies more specific, structured guides of learning, called 'missions', to the students throughout the whole learning process. In a words, GBS ought to be recognized as an unique learner-centered model compromising the contradictory concepts of 'learner control' and 'structure and specifics' in learning environments still without any damage of constructivist learning principles.

  • PDF

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.28-34
    • /
    • 2023
  • We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.

Performance Evaluation of Cache Coherence Scheme for Data Allocation Methods (데이타 배치 방식에 따른 캐쉬 일관성 유지 기법의 성능 평가)

  • Lee, Dong-Kwang;Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.592-598
    • /
    • 2000
  • The locality of data references at the distributed shared memory systems affects the performance significantly. Data allocation methods by considering the locality of data references can improve the performance of DSM systems. This paper evaluates the performance for the dynamic limited directory scheme which data allocation methods can apply very effectively. The information of the data allocation is used by the dynamic limited directory scheme to set the presence bit effectively. And the proper use of the presence bit improves the performance by reducing memory overhead and using directory pool efficiently. Simulations are conducted using three application programs which have various data sharing. The results show that the optimal data allocation method improves the performance up to 3.6 times in the proposed scheme.

  • PDF

Automatic Dynamic Memory Management Techniques for Memory Scarce Java system (메모리가 적은 자바 시스템을 위한 자동 동적 메모리 관리 기법)

  • Choi, Hyung-Kyu;Moon, Soo-Mook
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.378-384
    • /
    • 2008
  • Many embedded systems are supporting Java as their software platform via Java virtual machine. Java virtual machine manages memory automatically by providing automatic memory management, i.e. garbage collector. Because only scarce memory is available to embedded system, Java virtual machine should use small memory and manage it efficiently. This paper introduces two memory management techniques to exploit small memory in Java virtual machine which can execute multiple Java applications concurrently. First, compaction based garbage collection is introduced to overcome external fragmentation problem in presence of immovable memory area. Then garbage collector driven class unloading is introduced to reduce memory use of unnecessary loaded classes. We implemented these techniques in working embedded system and observed that they are very efficient, since more Java applications are able to be executed concurrently and memory use is also reduced with these techniques.

A Dynamic Allocation Scheme for Improving Memory Utilization in Xen (Xen에서 메모리 이용률 향상을 위한 동적 할당 기법)

  • Lee, Kwon-Yong;Park, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.147-160
    • /
    • 2010
  • The system virtualization shows interest in the consolidation of servers for the efficient utilization of system resources. There are many various researches to utilize a server machine more efficiently through the system virtualization technique, and improve performance of the virtualization software. These researches have studied with the activity to control the resource allocation of virtual machines dynamically focused on CPU, or to manage resources in the cross-machine using the migration. However, the researches of the memory management have been wholly lacking. In this respect, the use of memory is limited to allocate the memory statically to virtual machine in server consolidation. Unfortunately, the static allocation of the memory causes a great quantity of the idle memory and decreases the memory utilization. The underutilization of the memory makes other side effects such as the load of other system resources or the performance degradation of services in virtual machines. In this paper, we suggest the dynamic allocation of the memory in Xen to control the memory allocation of virtual machines for the utilization without the performance degradation. Using AR model for the prediction of the memory usage and ACO (Ant Colony Optimization) algorithm for optimizing the memory utilization, the system operates more virtual machines without the performance degradation of servers. Accordingly, we have obtained 1.4 times better utilization than the static allocation.

A Dynamic Programming Neural Network to find the Safety Distance of Industrial Field (산업 현장의 안전거리 계측을 위한 동적 계획 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sub;Kim, Yeong-Min;Hwang, Jong-Sun;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.23-27
    • /
    • 2001
  • Making the safety situation from the various work system is very important in the industrial fields. The proposed neural network technique is the real titre computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objests during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of obejects. All of them request much memory space and titre. Therefore the most reliable neural-network algorithm is drived for real time recognition of obejects, which is composed of a dynamic programming algorithm based on sequence matching techniques. And the real time reconstruction of nonlinear image information is processed through several simulations. I-D LIPN hardware has been composed, and the real time reconstruction is verified through the various experiments.

  • PDF