• 제목/요약/키워드: dynamic measurement

검색결과 1,890건 처리시간 0.025초

북서태평양 명태 어장의 해황 - 1 . 해저지형과 해수유동 - (Oceanography in the Waters Adjacent to Kamchatka and Kurile Islands in the Northwestern Pacific - I)

  • 양재목;장선덕
    • 수산해양기술연구
    • /
    • 제13권1호
    • /
    • pp.11-15
    • /
    • 1977
  • 1977~76년에 부산수산대학의 오태산호를 사용하여 북서태평양의 소련 Kamchatka 반도와 Kurile열도 근해에서 해양 관측, 음향 측심 및 해류 조사를 실시한 자료를 해석하고, 해수유동과 해저지형과의 관련성 등에 관하여 검토하였다. Kamchaka 반도 동방의 대륙붕은 넓게 확장되어 그 폭은 약 75km에 달하고 그 경사는 완만하다(1~2。). 이 대륙붕은 Paramushir도 동방에서 폭이 좁아져서 약 36km가 되고 경사가 급해진다. Onekotan만 동쪽 약 20mile 해역에는 대륙붕이 조금 짤라져 해삼 모양의 솟은 곳이 있고, 그 단면은 평두해산과 비슷하다. Kurile열도 동방 Oyashio 해류 유역에서 직접 측류한 결과는 약 1kt로서 해류의 역학계산으로 얻은 유속 0.5~0.7kt 보다 조금 빨랐다. Oyashio 해류 동쪽 가장자리에는 강한 해류와 개속된 대소 규모의 좌선 및 우선 소용돌이가 줄지어 있다.

  • PDF

저속 충격하중에서의 FRP Sheet 및 강섬유 보강 콘크리트의 거동 해석 (Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers Under Low-Velocity Impact Loading)

  • 이진영;김미혜;민경환;윤영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.155-164
    • /
    • 2011
  • 충격 하중 재하 실험의 경우 빠른 하중 재하 속도로 인해 실험 데이터를 측정하는 방법에 있어 많은 어려움이 있다. 또한 부재의 국부적 손상을 측정하지 못함으로써 부재의 동적 거동을 왜곡하는 문제점이 존재한다. 따라서, 본 연구에서는 충격 실험에서의 한계를 극복하기 위하여 명시적(explicit) 유한요소 해석 프로그램인 LS-DYNA를 이용하여 FRP Sheet 및 강섬유로 보강된 콘크리트의 저속 충격 하중 하에서의 동적 거동을 분석하였다. 해석 모델은 1방향 및 2방향 부재이며 충격 하중 재하 시부재의 국부적 파괴를 고려하고 있다. 해석결과 강섬유에 의해 보강된 SFRC와 UHPC 부재의 경우 충격 저항성능이 크게 향상되었다. FRP Sheet로 보강한 경우 GFRP가 CFRP보다 우수한 충격 저항 성능을 보였으며 FRP Sheet의 방향성에 의한 영향은 크게 나타나지 않았다. 본 연구에서 수행된 해석은 충격 실험 결과와의 비교를 통해 그 신뢰성이 검증되었다.

유한요소법을 이용한 골판지 포장화물내 배의 진동해석 (Vibration Analysis of Pears in Packaged Freight Using Finite Element Method)

  • 김만수;정현모;김기복
    • Journal of Biosystems Engineering
    • /
    • 제29권6호
    • /
    • pp.501-507
    • /
    • 2004
  • Fruits we subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonant frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The vibration characteristics of the pears in corrugated fiberboard container in transit were analyzed using FEM (finite element method) modeling, and the FEM modeling approach was first validated by comparing the results obtained from simulation and experiment for the pear in the frequency range 3 to 150 Hz and acceleration level of 0.25 G-rms and it was found that between simulated and measured frequencies of the pears have a relatively good agreement. It was observed that the fruit and vegetables in corrugated fiberboard container could be analyzed by finite element method. As the elastic modulus of the cushion materials of corrugated fiberboard pad and tray cup decreased, the first frequencies of upper and lower pears increased and the peak acceleration decreased.

소형콘의 관입저항력을 이용한 점토의 액성한계측정에 관한 연구 (Study on the Measurement of Liquid Limit Using a Penetration Resistance of Small Cone in Clay Soil)

  • 손무락;이재용
    • 한국지반공학회논문집
    • /
    • 제32권10호
    • /
    • pp.5-15
    • /
    • 2016
  • 본 연구에서는 소형콘의 관입저항력을 이용한 점토의 액성한계를 측정하기 위하여 카올리나이트 점토와 벤토나이트 점토의 비율을 다양하게 혼합한 점토흙에 대하여 함수비와 소형콘의 관입저항력을 조사하고 기존의 동적(Casagrande 시험법) 및 정적(Fall cone 시험법) 액성한계 시험결과와 직접 비교하였다. 비교결과 다양한 점토흙의 함수비에 따른 관입저항력 관계곡선에서 변곡점이 형성된다는 것을 파악하였으며 이 때의 함수비가 정적액성한계(Fall cone)시험법에 의한 액성한계 값과 매우 유사함을 파악하였다. 변곡점이 형성된 점에서의 소형콘의 관입저항력은 약 0.2kPa로 나타났으며 이 때 의 함수비가 점토흙의 액성한계를 나타낸다는 것을 확인하였다. 이와 같은 연구결과를 토대로 향후 점토의 액성한계를 파악하는데 본 연구에서 조사된 0.2kPa의 소형콘의 관입저항력이 유용한 지표가 될 수 있다는 사실을 파악하였다. 또한 소형콘의 관입저항력을 이용한 액성한계 시험법을 제시하였다.

FMCW 전파고도계의 신호처리 알고리즘 구현 (Implementation of Signal Processing Algorithms for an FMCW Radar Altimeter)

  • 최재현;장종훈;이재환;노진입
    • 한국전자파학회논문지
    • /
    • 제26권6호
    • /
    • pp.555-563
    • /
    • 2015
  • 본 논문에서는 주파수 변조 연속파(FMCW) 전파고도계의 신호처리 알고리즘 및 실용적인 평가방안을 제안한다. 전파 고도계는 초기에 탐색모드로 동작하여 고도를 탐색하고, 유효한 고도가 탐색되면 추적모드로 전환되어 측정된 고도를 표시한다. 고도 탐색/추적 시 기준고도 또는 추적고도에 따라 변조대역폭을 제어함으로써 비트 주파수 대역폭을 제한하며, 송신출력과 수신이득의 제어를 통해 고도 변화에 따라 늘어난 수신 전력의 동적 범위를 보상하도록 설계하였다. 개발된 전파고도계의 성능은 더욱 실제적인 환경에서의 크레인 시험을 통해 신호처리 알고리즘의 동작과 낮은 측정오차를 성공적으로 검증하였다.

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축 (1-D Model to Estimate Injection Rate for Diesel Injector using AMESim)

  • 이진우;김재헌;김기현;문석수;강진석;한상욱
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.